Occupational Cancer: Knowledge and Needs

AARON BLAIR, PhD, MPH

Occupational Cancer Research Centre, Toronto, ON and the Occupational and Environmental Epidemiology Branch National Cancer Institute, Bethesda, MD

INSTITUTE FOR WORKERS HEALTH TORONTO, ON NOVEMBER 4, 2009

Occupational Cancer

- What do we know about occupational cancer?
- What are we doing now?
- What are the important methodologic issues?
- Has prevention been successful?

References on Occupational Causes of Cancer

- Tomatis L, Huff J, Hertz-Picciotto I, Sandler DP, Bucher J, Boffetta P, Axelson O, Blair A, Taylor J, Stayner L, Barrett JC. Avoided and avoidable risks of cancer. Carcinogenesis 18:97-105, 1997.
- Siemiatycki J, Richardson L, Straif K, Latreille B, Lakhani R, Campbell S, Rousseau M, Boffetta P. Listing of occupational carcinogens. Environ Health Perspect 112:1447-1459, 2004.

Some Well-Established Occupational Causes of Cancer

Cancer Site	Exposure	Cancer Site	Exposure	
	Bendizine	Mesothelioma	Asbestos	
Bladder	Coal tars	Bone	Radium	
Diauuei	2-Naphthylamine	Larynx	Sulfuric acid mist	
	4-Aminobiphenyl	Liver	Arsenic	
	Arsenic	Liver	Vinyl chloride	
	Asbestos		Nickel	
	Beryllium	Nasal cavity/sinuses	Radium	
	Chloromethyl ether	- Carriy/Omraece	Chromium	
Lung	Chromium	Skin	Arsenic	
	Coal tar pitch volatiles	Skin	Coal tars	
	Radon	Leukemia	Benzene Formaldehyde	
	Silica	Nacanharyny	Formaldahyda	
	Mustard gas	Nasopharynx	Formaldehyde	

Partial List of Chemicals Causing Cancer in Animals, but With No Adequate Epidemiologic Data

(From IARC, Supplement 7)

- Chlordecone
- Chloro-ortho-toluidine
- Dichloroethane
- Ethylhexyl phthalate
- Diethylhydrazine
- Ethyl acrylate
- Methylene dianiline
- Mirex

- Nitropropane
- Potassium bromate
- Safrole
- Styrene oxide
- Sulfallate
- Thioacetamide
- Toluene diisocyanate
- Vinyl bromide

New Epidemiologic Leads: Suggested Associations Requiring Further Evaluation (adapted from Monson, 1996)

Substance	Cancer	Substance	Cancer	
	Gastrointestinal	Butadiene	Leukemia	
Asbestos	Kidney	Butadiene	Lymphoma	
	Larynx, Lung	Selected herbicides	Non-Hodgkin's lymphoma	
Cadmium	Prostate		Lung	
Cutting oils	Lung	Diesel fumes	Bladder	
Cutting oils	Skin	Diesei fumes	Stomach	
Cormoldobydo	Nasal sinuses	Dust	Lung	
Formaldehyde	Hodgkin disease	Man-made mineral	Lymphoma	
Silica	Stomach	fibres	Lung	
Tolo	Lung		Lung	
Talc	Ovary	Calcated pacticides	Leukemia	
Vinyd ablasida	Brain	Selected pesticides	Drestate	
Vinyl chloride	Ovary		Prostate	

New Epidemiologic Leads: Occupations Associated with Cancer Where Agent Has Not Been Clearly Identified

(adapted from Monson, 1996)

Occup Group	Cancer Site	Occup Group	Cancer Site
	Leukemia		Bladder
	NHL		Esophagus
	Lung	Dry cleaners	Kidney
Farmers	Prostate		Liver
railleis	Lip		Cervix
	Stomach	Embalmers	Leukemia
	Brain		Leukemia
	Myeloma	Petrochemical	Brain
Chemists	Various sites	workers	Kidney
Pattern makers	Colon		NHL
Welders	Lung	Rubber workers	Leukemia
vvciuci 5	Lung	LANDEL MOLKEL2	Lung

New Epidemiologic Leads: Occupations Associated with Cancer Where Agent Has Not Been Clearly Identified (adapted from Monson, 1996)

Occup Group	Cancer Site	Occup Group	Cancer Site
Veterinarians	Leukemia	Lead workers	Lung
Waiters	Lung	Lead workers	Brain
Artists	Bladder	Meat workers	Lung
Bakers	Lung	Meat workers	Leukemia
Cement workers	Lung		Lung
Cement workers	Stomach	Painters and paint manufacturers	Bladder
Coal miners	Stomach		Myeloma
Coarminers	Leukemia	Plumbers	Lung
Coke plant workers	Pancreas	Fiuilibers	Leukemia
Coke plant workers	Colon	Truck drivers	Bladder
Beauticians	Leukemia	Huck unvers	Lung

Proportion of Cancer Due to Various Factors

(from Doll and Peto, 1981 and Lichtenstein et al., 2000)

<u>Factor</u>	<u>%</u>
Genes	20-40
Diet	35
Tobacco	30
Infections	10
Reproductive/sexual behavior	7
Occupation	4
Geophysical factors	3
Alcohol	3
Pollution	2
Medicines	1

November 4th, 2009

Issues Regarding Estimation of the Cancer Burden

- Two groupings of causal factors
 - Major diet, tobacco, and genes
 - Minor environment, occupation, infections, alcohol, pollution, reproductive/sexual behavior, medicines
- Strength of evidence for various risk factors varies
- Contributions vary in subpopulations, i.e., occupational contribution among blue-collar workers may approach 25%, not 4%
- Occupational and environmental exposures typically not voluntary

Occupational Carcinogens from IARC Monographs

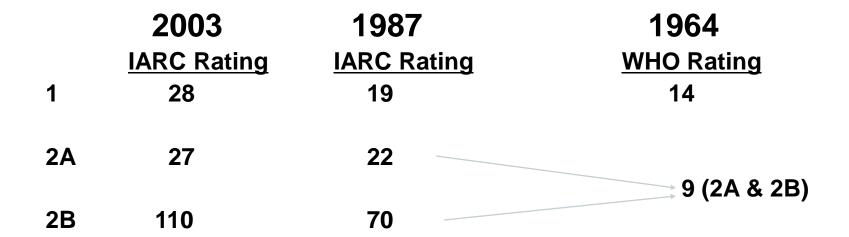
- IARC evaluations through 2003
 - 89 Sufficient (1); 28 occupational carcinogens
 - 64 Probable (2A); 27 occupational carcinogens
 - 264 Possible (2B); 110 occupational carcinogens
- 18 Industries/occupations as 1, 2A, or 2B
- Percent Occupational
 - Sufficient 31%
 - Probable 42%
 - Possible 42%

From: Siemiatycki et al. Environ Health Perspect 2004;112:1447-1459.

November 4th, 2009 Slide 11

Number of Occupational Associations by Cancer

Cancer	Strong Associations	Suggestive Associations
Lung	18	16
Bladder	8	15
Skin	8	3
Nasal cavities/sinus	7	3
Leukemia	3	4
Larynx	3	2
Liver	2	2


From: Siemiatycki et al. Environ Health Perspect 2004;112:1447-1459.

Cancer and Occupational Exposures

- Airway sites prominent
- Bladder and skin frequent
- Leukemia and liver occur
- Digestive and reproductive systems largely absent
- Leads for blood/lymph, digestive, and reproduction systems

Growth in Understanding about Occupational Carcinogens

From: Siemiatycki et al. Environ Health Perspect 2004;112:1447-1459.

What Are We Doing Now

Survey of issues of Am J Industr Med from 01/2007 to 05/2009

- 256 research articles
- 31 research articles on cancer (12%)

Gender

Design

- 24 white men

- 11 cohort

- 12 women

- 13 case-control
- 3 minorities

- 7 other

Country Location

Exposure Assessment

- 27 developed

- 18 occupation/industry

- 4 developing
- 4 JEM
- 1 quantitative estimates
- 9 other

How is Research on Occupational Cancer Faring?

- Funding? Decrease
- Number of occupational research projects?
 Decrease
- Number of occupational cancer sessions at scientific meetings? Decrease
- Number of published papers? Probably a decrease

Why the Reduction in Occupational Research

Perceptions:

- Not an important contributor to the cancer burden
 - Contributes as much as any factor, except diet, tobacco, & heredity
- No new leads
 - Many leads from epidemiological and experimental studies
- Occupational exposures well controlled
 - Some are, most are not
- Not scientifically important
 - Provided much of what we know about carcinogenesis. Can be even more important in the "omics" era
- Political decisions

The major impediment

What Don't We Know About Occupational Carcinogens

- Women and minorities seldom studied
 - Survey of 1233 occupational cancer reports (Zahm, 1994)
 - Only 14% with any analyses of women
 - Only 7% with more than 5 risk estimates
- Workers in small businesses rarely studied
- Most studies in developed countries
- Some sites studies more than others

IARC and NIOSH Evaluation of 2A and 2B Carcinogens: Needs and Gaps

Criteria to be placed on the list:

- Widespread occupational exposure
- Other reasons for public health importance
- Preference for single agents

Other considerations:

- Associations with cancers with increasing rates
- Caution against an overemphasis on molecular research

2A and 2B Carcinogens Selected for IARC Needs and Gaps Meeting

Selected

Shiftwork

Diesel exhaust

Styrene-7,8 oxide

Tetrachloroethylene

Trichloroethylene

Cobalt with tungsten carbide

Indium phosphide

Refractory ceramic fibers

Carbon black

Styrene

Propylene oxide

Chloroform

Dichloromethane

Welding fumes

Atrazine

Ethylhexyl phthalate

Formaldehyde

PCBs

Lead and lead compounds

Considered But Not Selected

Toluenes and benzoyl chloride

Acrylamide

Epichlorohydrin

Naphthalene

Acrylonitrile

Chloroprene

Ethyl acrylate

Toluene diisocyanates

Carbon tetrachloride

Methylenedianiline

Nitrobenzene

1.4-Dioxane

Hydrazine

Ethylene dibromide

Vinyl fluoride and vinyl bromide

November 4th, 2009 Slide 20

Methodologic Needs for Future Studies

- More studies of women, minorities, and in developing countries
- Enhanced use of quantitative exposure assessment
- Collection of information on non-occupational risk factors to evaluate interactions and susceptibilities
- Assess mechanisms of action and evaluate geneexposure interactions
- More frequent use of cross-sectional, case-control, and prospective designs than in the past

Type of Exposure Assessment in Occupational Studies of Cancer

Type of Exposure Assessment	Number of Studies	%
Occupation or Industry only	23	32
Occupation/Industry and duration	19	26
Ever/never for specific exposures	7	10
Qualitative estimates	15	21
Quantitative estimates	8	11
Total	72	100

From articles on occupational cancer published in the Scand. J. Work Environ. Health and the Amer. J. Industr. Med. over a two year period.

Issues in Occupational Epidemiology of Cancer

- Confounding
- Exposure Misclassification
- Prevention

Control for Smoking Confounding in a Case-Control Study of Lung Cancer and Occupation

Occupational Category	Unadjusted OR	Smoking/Age Adjusted OR	
Professionals/technicians	0.9	1.1	
Office/related personnel	1.0	1.1	
Agric/forestry/fishery workers	1.4	1.5	
Metal smelting and treatment	1.2	1.1	
Chemical workers	1.6	1.4	
Textile workers	0.7	0.7	
Food/beverage workers	0.9	1.0	
Printers	1.2	1.5	
Pipe fitters/welders	0.9	0.9	
Painters	1.6	1.4	
Transportation equipment	1.1	1.1	
Construction workers	1.6	1.4	

From: Levin et al. Br J Ind Med 1988;450-458.

Control for Smoking and Asbestos Confounding in a Case-Control Study of Lung Cancer and Occupation

Industry	Age Adj OR	Age/Smk Adj OR	Age/Smk/Asbestos Adj OR
Agric/forestry/fishing	1.3	1.3	1.3
Energy/mining	1.7	1.5	1.4
Chemical/oil	1. 2	1.2	1.2
Stone/glass/pottery	1.8	1.6	1.5
Metal production	1.4	1.4	1.3
Electrical/sheet metal	0.9	0.9	0.9
Leather/textile	1.0	1.0	1.0
Construction	1.6	1.4	1.3
Financing/insurance	0.8	0.8	0.8
Restaurants/hotels	1.4	1.0	1.1

From: Bruske-Hohlfeld et al. Am J Epid 2000;151:384-395.

Relative Risks (# Exposed Deaths) for Lung Cancer by Cumulative Exposure to Acrylonitrile

Quintile of Estimated Exposure						
Analysis Group	Lowest	2 nd	3 rd	4 th	Highest	P for Trend
% Ever Smoked Cigarettes	62%	64%	68%	72%	75%	
Entire Cohort	1.1 (27)	1.3 (26)	1.2 (28)	1.0 (27)	1.5 (26)	0.65
Entire Smoking Subcohort (Not Adj. for Smoking)	0.8 (27)	1.1 (26)	1.0 (28)	0.9 (27)	1.5 (26)	0.70
Smoking Subcohort with Smoking Data (Not Adj.)	0.3 (5)	0.9 (6)	1.0 (7)	1.0 (13)	1.7 (9)	0.80
Smoking Subcohort Adj. for Ever Used Cigarettes	0.3 (5)	0.8 (6)	1.0 (7)	0.9 (13)	1.6 (9)	0.99

From: Blair et al. Scand J Work Environ Health 1998;24:suppl 2:25-41.

Summary of Comparisons of Unadjusted and Adjusted RRs from Six Recent Am. J. Epidemiology Issues

- Four of 92 comparisons differed by >0.3
- Four of 92 might result in a different conclusion using adjusted RR
 - Two with a change in magnitude
 - Two with a change to no effect

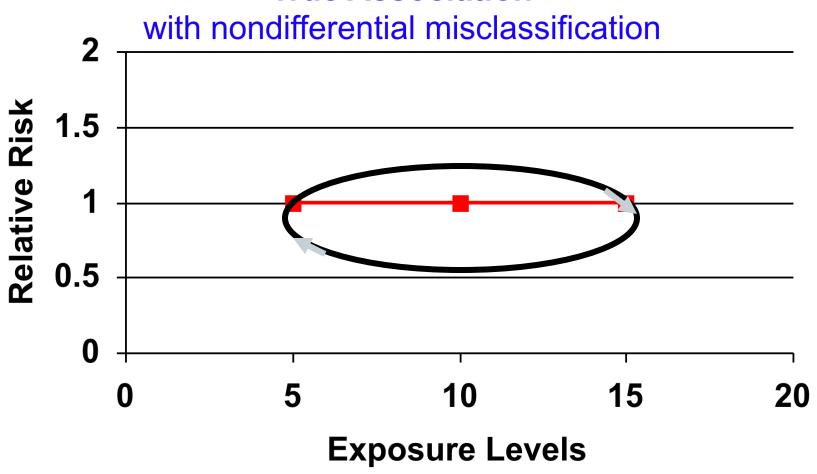
Conclusions About Confounding

My Conclusion:

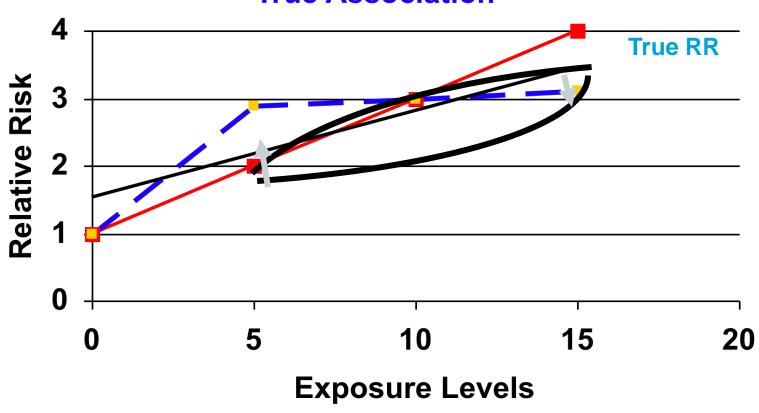
- Confounding is rare only 5% occurrence in this sample
- Should not discount findings based on a suggestion of confounding without some evidence that it actually occurs
- Confounding What if you cannot adjust directly?
 - Are requirements for confounding evident?
 - Are other effects of confounding apparent?
 - Has this confounding occurred in other studies?
 - Estimate possible effect (Axelson method for smoking)

Misclassification of Exposure in Epidemiologic Studies

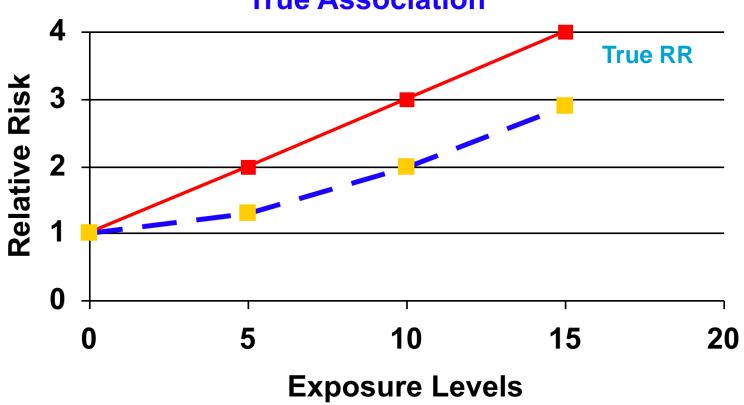
The major limitation in epidemiology because:


- Direct biologic measures extremely rare
- Air measurements clustered in recent years
- Quantitative estimates desirable, but fraught with error

Exposure and Disease Misclassification: Bias towards the Null


True Exposure Classification			With 20% Non-differential Misclassification of Exposure				
Exposed Yes No					Expo Yes	sed No	
Case	150	350	500	Case	190	310	500
Control	50	450	500	Control	130	370	500
	200	800	•		320	680	
OR=3.9		_		OR:	=1.7		

In this example, the observed OR is attenuated by 56% when 20% of exposed cases (n=30) and controls (n=10) are misclassified as non-exposed, and 20% of non-exposed cases (n=70) and controls (n=90) are misclassified as exposed.


Misclassification of Exposure: True Association

Misclassification of Exposure: True Association

Misclassification of Exposure: True Association

Levels of Misclassification in Occupational Studies

- Acrylonitrile Measurements/estimates, r = 0.6
- Dioxin Serum levels/estimates, r = 0.70
- Coal tar volatiles Measurements/estimates, r = 0.42
- Formaldehyde Different estimates, r = -0.1 to 0.7
- Jobs Reported/recorded jobs, 83% agreement
- Welding fumes- Measurements/experts, r = 0.42
- Asbestos Supplementary Qx/JEM, Kappa = 0.39
- 2,4-D PK Model/urinary measurements, r = 0.65

Misclassification of Exposure

Conclusion

- Misclassification is the major weakness
- Not well considered in data interpretation
- Ignoring it creates false negative impressions

Must consider impact of misclassification

- Evaluation degree of misclassification
- Scour literature for relevant data and examples
- Perform sensitivity analyses to estimate effects
- Assess magnitude of misclassification in relation to other study biases and problems

Prevention of Occupational Cancer

- Cancer incidence and mortality has not declined as rapidly as other major causes of death
- 50% of cancers might be prevented
- Disagreement on the proportion attributable to various risk factors
- Estimates of attributable risks largely based on unverified assumptions
- Effect primary prevention could be achieved by number of exposures and reduction in level of exposure
- Not much direct evidence on effectiveness of occupational exposure intervention
- Epidemiology criteria for establishing causality are stringent and demanding
 - Protect against false positives
 - May have allowed false negatives and impeded adoption of public health measures
- Important remaining issues:
 - Shape of the dose-response and the question of a threshold
 - Complex mixtures and multiple exposures

Tomatis L, Huff J, Hertz-Picciotto I, Sandler DP, Bucher J, Boffetta P, Axelson O, Blair A, Taylor J, Stayner L, Barrett JC. Avoided and avoidable risks of cancer. Carcinogenesis 18:97-105, 1997.

November 4th, 2009 Slide 36

Preventive Approaches

Type of Action	Example	
Direct Action	Changing processes or raw ingredients	
Regulation	Restricting or banning use in industry	
Commerce	Requiring radon assessment	
Education	Publicity about the risks from exposure from asbestos	

Evidence Indicating That Prevention Works for Occupational Exposures

- Decreased risk when individuals leave an exposure area
- Changes in risks in a cohort as exposure levels decrease
- Lower risks among those entering a workforce when exposures were lower

From: Tomatis et al. Carcinogenesis 1997;18(1):97-105

Cancer Risk After Cessation of Asbestos Exposure Among Cement Workers

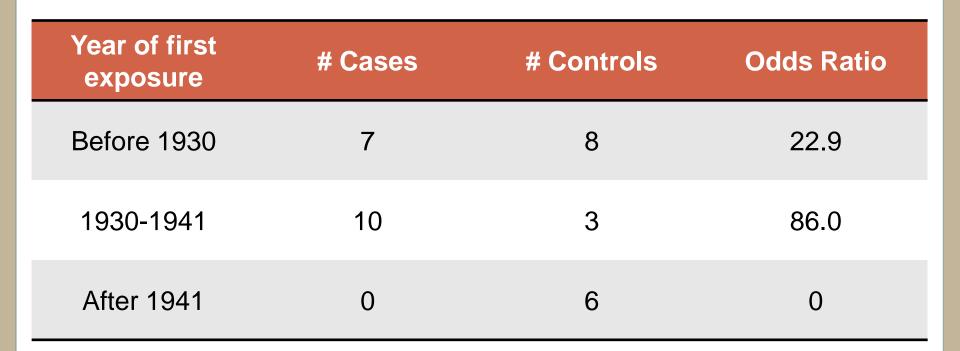
(Individuals leave exposure area, i.e., the workplace)

Years since last Exposure	Number	Relative Risk
Lung		
<3	21	0.38
3-15	125	1.00 (referent)
15-30	89	0.70
30+	23	0.56
Pleura		
<3	13	0.67
3-15	55	1.00 (referent)
15-30	55	0.90
30+	16	0.65

From: Magnani et al. Occup Environ Med 2007;65:164-170

Stove Improvement and Lung Cancer in Cohort in China (Reduction in exposure for the cohort)

Stove Improvement


	None	0-10 Years Later	10-19 Years Later	20+ Years Later
Men	1.0	1.79	0.25	0.07
Women	1.0	1.41	0.24	0.17

All RR are statistically significant

From: Lan et al. J Natl Cancer Inst 2002;94:826-835

Risk of Nasal Adenocarcinoma by Calendar Year of First Exposure to Wood Dusts

(Lower risk among those first exposed at lower levels)

From: Hayes et al. Am J Epid 1986;124-569-577

November 4th, 2009 Slide 41

Why So Few Clear Examples of Preventive Successes for Environmental Exposures

- Public tends to view intervention as the final step in the prevention process
- Funding more difficult for studies to characterize preventive effectiveness than to identify etiology
- For chronic diseases a consider time lapse is required before disease rates change

From: Tomatis et al. Carcinogenesis 1997;18(1):97-105

Thanks

QUESTIONS?

Why Preventive Approaches Should Work for Occupational Exposures

- Natural experiments
 - Rates for some cancers go down among migrants
- Toxicologic principle
 - Rates rise with increasing exposure, so they should decline with decreasing exposure
- Empirical evidence
 - Worked for tobacco

Odds Ratios for N-Acetylation, Benzidine, and Bladder Cancer

	Fast Acetylators	Slow Acetylators
Phenotype	1.0	0.3 (0.1-1.3)
Genotype	1.0	0.5 (0.1-1.8)

From: Hayes R, et al. Carcinogenesis 14:675-8, 1993

Explanation of N-acetylation, Benzidine, and Bladder Cancer Results

- Slow acetylation not associated with increased bladder cancer risk among benzidine exposed workers
- Biologic effects of N-acetylation are chemical specific
- Exposure assessment is critical
- Exposure assessment can often be performed more accurately in the workplace than elsewhere