イロト 不同下 イヨト イヨト

- 32

1/33

Income dynamics and adult mortality in Canada and the United States

Jacob Etches

Institute for Work & Health Plenary series

December 8, 2009

2/33

Project history

- PhD Dissertation, Epidemiology, University of Toronto
- September 2009
- Supervisor: Cameron Mustard
- Committee: Doug Manuel & William Gnam

Outline

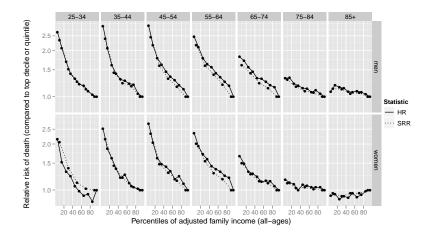
2 Study 1: Income drops and mortality in the US and Canada

Study 2: Income drops and mortality in Canada: evidence of causality

Outline

2 Study 1: Income drops and mortality in the US and Canada

3 Study 2: Income drops and mortality in Canada: evidence of causality


- Does income level determine adult mortality?
- Do income drops determine adult mortality?
- Are the effects of income level and income drops the same in Canada and the US?
- Who cares?
 - Income level: policies on distribution of income & health
 - Income drops: policies on labour market flexibility & income security
 - Canada v US: which country better protects the health and income security of its residents?

What we know about income & adult mortality

- Greater income is associated with lower mortality.
 - True for men and women.
 - True throughout working life.
 - True in Canada and the US.
- Income drops may be associated with greater mortality.
 - Unemployment
 - Usually associated with increased mortality
 - Involuntary job loss
 - Often associated with increased mortality
 - Income drops
 - May increase mortality only at middle income levels

Equivalized family income & mortality by age and sex

Introduction	Study 1	Study 2	Summary
○○○●	0000000	0000000000	0000

What we *don't* know about income & adult mortality

Income level

- Role of health selection
- Importance for mortality in Canada v US
- Income drops
 - Is the US finding statistically robust?
 - Is the US finding reproducible in Canada?
 - Elements of causal inference:
 - Strength of association?
 - Dose response?
 - Biologically plausible induction times?
 - Economically plausible dependency on income level?
 - Health selection?
 - Confounding?

Outline

2 Study 1: Income drops and mortality in the US and Canada

3 Study 2: Income drops and mortality in Canada: evidence of causality

Canada v USA: Introduction

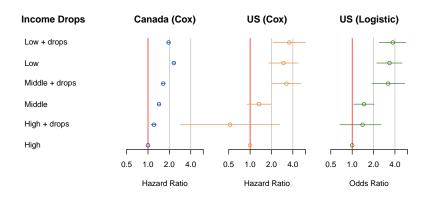
- Replicating McDonough et al. 1997
 - Income drops increased mortality only at middle income levels
- Questions:
 - Does US finding depend on the statistical method?
 - Is effect of income level similar in Canada & US?
 - Is effect of income drops similar in Canada & US?
 - Does the effect of drops depend on level in Canada & US?

Canada v USA: Methods

• Data:

- Canada: tax data (1982-2005)
- US: survey data (1968-1997)
- Ages 45-64 at baseline
- Analysis:
 - McDonough et al.: logistic regression
 - New analyses: Cox regression
 - Adjusted for age, sex, family size & black v white (US only)

Study 1	
000000	


Canada v USA: Results

	LAD (Ca	LAD (Canada)		PSID (US)	
	Mean	SD	Mean	SD	
Age (baseline, t-5)	49.1	6.1	49	4.7	
Family size (5y mean) ¹	2.8	1.2	3.4	1.4	
	Freq	%	Freq	%	
Died	40,180	6.9	341	13.8	
Male	311,795	53.3	805	46.3	
Black	NA	NA	168	9.7	
Drops (5y cum. incidence) ¹	160,950	31.2	227	13.4	
Income Level (5y mean, 1993 USD) ¹					
< 20,000 (low)	113,130	21.9	287	16.9	
20,000-70,000 (middle)	317,230	61.4	1067	62.9	
> 70,000 (high)	86,295	16.7	342	20.2	

¹ During first 5y period.

Introduction	Study 1	Study 2	Summary
0000	○○○●○○○	0000000000	0000

Interaction of income drops & income level

Introduction	Study 1	Study 2	Summary
0000	○○○○●○○	0000000000	0000

Under-ascertainment of deaths in Canadian tax data

- Mortality rates in tax data are 73% of official estimates
- Under-ascertainment could be differential by income level

Under-			
ascerta	inment		
Rich	Poor	RR	
0.7	0.7	4.0	
0.8	0.6	3.0	
0.9	0.5	2.2	
1.0	0.4	1.6	

Introduction 0000	Study 1	Study 2	Summary
0000		000000000000000000000000000000000000000	0000

Under-ascertainment of deaths in Canadian tax data

- 1991 Census mortality follow-up allows comparison
- Under-ascertainment may not be differential by income level

Sample	Age	Sex	RR: Q5/Q1
	45-64		2.3 1.9
Low + Drops		· · · · · · · · · · · · · · · · · · ·	
Census		M	2.5
Census		F	2.3
Conodo	55-64	M	2.2
Census	55-64	F	2.0

Canada v USA: Discussion

• Findings:

• Does US finding depend on the statistical method?

No.

- Is effect of income level similar in Canada & US?
 - No, the effect is greater in the US.
- Is effect of income drops similar in Canada & US?
 - No, effects are smaller in Canada.
- Does the effect of drops depend on level in Canada & US?
 - Yes. In Canada effect protective for poor. In US limited to middle incomes.

Outline

2 Study 1: Income drops and mortality in the US and Canada

Study 2: Income drops and mortality in Canada: evidence of causality

Study 2: Introduction

- Canada only
- Questions on income level:
 - Health selection?
- Questions on income drops:
 - Strength of association?
 - Dose response?
 - Biologically plausible induction times?
 - Economically plausible dependency on income level?
 - Health selection?
 - Confounding?
 - Family structure changes
 - Retirement
 - Family death
 - Self-employment

Introduction	Study 1	Study 2	Summary
0000	0000000	○●○○○○○○○○	0000

Study 2: Methods

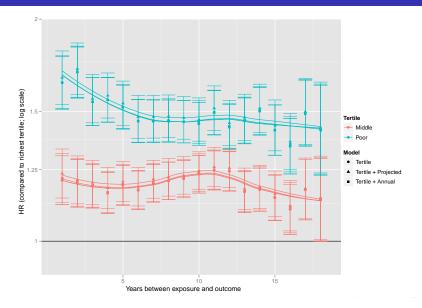
Data:

- Canada: tax data (1982-2005)
- Ages 40-55 at exposure
- Lag 1-18 years between exposure and death
- Deaths at age 41-73
- Analysis:
 - Cox regression
 - Adjusted for age
 - Exclusion: recent immigrants, missing income data
 - Models with and without work disability and other confounding variables
 - Separate models for each lag, sex, family type combination
 - lag (18) \times sex (2) \times family type (2) \times subsets (7) \times drops (2) = 1008 regressions
 - also main effects, additive, interactions
 - $\bullet\,$ also full data and 1992+ data

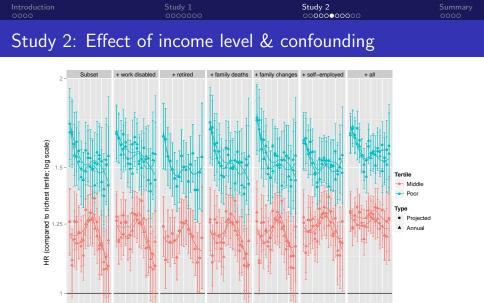
Introduction	Study 1	Study 2	Summary
0000	0000000	○○●○○○○○○○	0000
Study 2: Results			

- Results for men in couple families
- Deaths/model: range = 1,390 to 16,980

Study 1	Study 2	Summary
	0000000000	


Study 2: Distribution of projected income drops

- Projected drops more common than annual drops (not shown)
- Some "regression to mean:" small drops for rich
- But poor more likely to experience largest drops


Income	Income level		
Drops	Poor	Middle	Rich
None	57.9	55.0	44.9
(0-15%]	18.9	25.8	31.1
(15-50%]	17.1	16.3	20.5
(50-100%]	6.1	2.9	3.5
TOTAL	100	100	100

Introduction	Study 1	Study 2	Summary
0000	0000000	○○○○●○○○○○○	0000

Study 2: Effect of income level adjusting for income drops

22/33

5 10 15

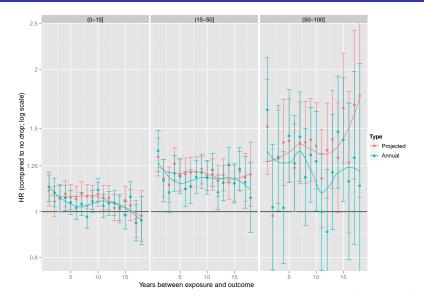
5 10 15

5 10 15

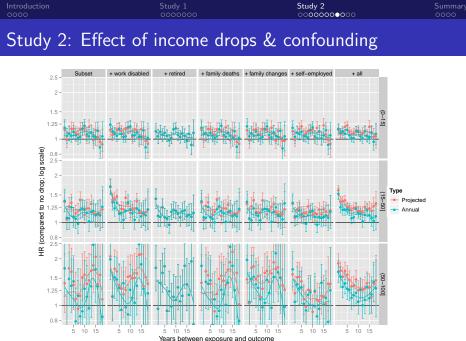
5 10 15

Years between exposure and outcome

5 10 15

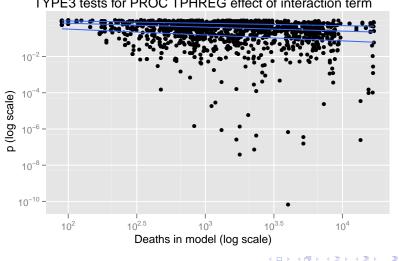

5 10 15

5 10 15


୬ ବ (୯ 23 / 33

Introduction	Study 1	Study 2	Summary
0000	0000000	○○○○○○●○○○○	0000

Study 2: Effect of income drops (all exclusions)



24 / 33

Study 2: Interaction between income drops & income level

TYPE3 tests for PROC TPHREG effect of interaction term

26 / 33

Study 2

Study 2: Discussion: income level

- Questions on income level:
 - Is health selection the principle pathway?
 - No. Little decay in effect argues against health selection.
 - No. Effect of income level not greater among those with income drops, regardless of induction times.

Introduction	Study 1	Study 2	Summary
0000	0000000	○○○○○○○○●	0000

Study 2: Discussion: income drops

- Questions on income drops:
 - Strength of association?
 - Small for causal inference. Substantial for population burden.
 - Dose response?
 - Yes, for men in couple families.
 - Biologically plausible induction times?
 - Maybe not: enduring effect of acute exposure.
 - Economically plausible dependency on income level?
 - No.
 - Health selection?
 - Effect persists, but residual confounding possible.
 - Confounding by family structure changes, retirement, family death, self-employment
 - Effect persists.

Outline

2 Study 1: Income drops and mortality in the US and Canada

3 Study 2: Income drops and mortality in Canada: evidence of causality

What these studies add

- Income level is a strong determinant of mortality, and the effect is primarily causal.
- Income drops are associated with increased mortality, but evidence for causality is mixed.
- Income level likely has a stronger effect on mortality in the US than in Canada.
- Income drops have not been shown to have a similar effect in the US and Canada.

Introduction	Study 1	Study 2	Summary
0000	0000000	0000000000	○●○○
Study strengths			

- LAD: generalizability, sample size, longitudinal, low loss to follow-up
- LAD/PSID: death as outcome
- LAD/PSID: high quality annual family income data by component
- LAD/PSID: spans several business cycles
- LAD: examination of relevant induction times
- LAD: differences by sex & family type
- LAD: control for important sources of confounding
- PSID: survey follow-up of death events

Introduction	Study 1	Study 2	Summary
0000	0000000	0000000000	00●0

Study weaknesses

- LAD: underascertainment of death events
 - more likely at lower income
 - misclassification bias (to null)
- LAD: no data on occupation, education, health status (confounding bias)
- LAD: no data on cause of death
- PSID: sample size
- PSID: sample pre-dates recent Hispanic immigration
- LAD v PSID: samples not entirely comparable
- LAD v PSID: uncontrolled confounding

Study 1	Study 2	Summary
		0000

Acknowledgements

Support

- Hung Pham, Jeffrey Smith, Andre Bérnard (Statistics Canada)
- René Morissette & Yuri Ostrovsky (Statistics Canada)
- Sheilah Hogg-Johnson & Amber Bielecky (Institute for Work & Health)
- Funding
 - Institute for Work & Health
 - Lupina Foundation: Doctoral Fellowship in the Comparative Program on Health & Society (Munk Centre for International Studies)
 - CIHR: Doctoral Award