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Easy-to-understand definitions of common research terms in 
the health and social sciences

What researchers mean by...

Note: Although some of the examples used in this booklet to help illustrate the terms come from real 
research, most examples are fictional. As well, many of the examples come from the world of work-
place injury prevention, disability management and workers’ compensation, because that is the field in 
which the various authors worked in during the writing of these term explanations.
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From 2005 to 2017, the Institute for Work & Health (IWH), a not-for-profit 
research organization based in Toronto, Canada (www.iwh.on.ca), 
ran a column called “What researchers mean by ....” in its quarterly 
newsletter AtWork. The aim of the column was to explain research 
terms in plain language so that non-scientists can more easily 
understand the methods and findings of IWH researchers and others in 
the health and social sciences.

Little did the Institute know when it launched this series that it would 

turn out to be so popular. Some of the terms defined in WRMB (the ac-

ronym commonly used to refer to the column) have received hundreds 

of thousands of website visits from around the world over the years. It’s 

heartening to see such a thirst for knowledge about research terms.

This booklet pulls together in one place most of the terms covered in 

the WRMB column over the past 10-plus years. 

These columns were written by various people in their role as AtWork 

editor, knowledge transfer & exchange professional or communications 

manager at the Institute. They include: Anita Dubey, Kathy Knowles-

Chapeskie, Evelyne Michaels, Cindy Moser, Megan Mueller, Rhoda 

Reardon, Katherine Russo and Uyen Vu. 

What these people all had in common was the guidance of Dr. Sheilah 

Hogg-Johnson, a biostatistician and senior scientist who joined the 

Institute in 1992 and left 25 years later upon her retirement in 2017. The 

column (and this booklet) would not have been possible without her 

expert feedback and patient explanation of research terms.

Foreword 
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Absolute and relative risk
Absolute risk is the number of people experiencing an 
event in relation to the population at large. Relative risk is 
a comparison between two groups of people or in the same 
group of people over time. Knowing which type of risk is be-
ing reported is important in understanding the magnitude 
of the risk.

The media often mentions risk when reporting on research, 

but this can sometimes be misleading. For example, if a 

newspaper article reports on research that shows a certain 

gene puts people at an 800 per cent increased risk of getting 

a blood clot, and you have that gene, you would likely be very 

worried reading this news. But should you be? Understanding 

how risk is expressed can help determine a study’s signifi-

cance, or a person’s chance of illness, injury or recovery. Risk 

can be explained in terms of absolute or relative risk. Here’s a 

look at the difference between these terms.

Absolute risk
Let’s say a study of 100 workers in factory A revealed that 

20 workers experienced back pain on the job. In factory B, 

30 workers in a similar workplace of 150 workers developed 

back pain. The absolute risk of developing back pain is simply 

the percentage of people affected. This is 20 per cent in both 

groups. In scientific terms, absolute risk is the number of 

people experiencing an event in relation to the population at 

risk.

Relative risk
Relative risk is a comparison between two groups of people, or 

in the same group of people over time. It can be expressed as 

a ratio. In the example above, the relative risk of developing 

back pain — comparing factory A and factory B — is 20:20 or 

one. That is, workers in factory A are no more (or less) likely 

to have back pain than workers in factory B. It’s 20 per cent 

for both groups.

Now suppose workers in factory A were to receive exercise 

therapy for half an hour each day. One year later, we find that 

only eight of 100 workers have back pain, while the rate in fac-

tory B remains the same at 20 per cent.

The ratio now changes to 8:20. Eight is the risk per 100 

workers in factory A. Twenty is the risk per 100 workers in 

factory B. If we divide eight by 20, this gives us 0.40, or 40 per 

cent. In other words, the relative risk of developing back pain 

in factory A is now 40 per cent of the risk in factory B.

Risk reduction
How much did the risk of back pain change due to the exer-

cise therapy intervention? Again, this can be calculated two 

ways, using absolute and relative risk reduction.

Absolute risk reduction is the difference in the percent-

age of people who are affected. Again, recall that before the 

intervention, 20 per cent of workers in factory A developed 

back pain. Afterwards, eight per cent did. The difference is 12. 

Therefore, the intervention resulted in an absolute risk reduc-

tion of 12 per cent.

The relative risk reduction is the change in relative risk. 

Recall that before the intervention, the relative risk was one 

for both factory A and B. After the intervention, it dropped to 

0.40. The difference is 0.60. In other words, the intervention 

resulted in a 60 per cent reduction in relative risk.

Which is better?
Risk expressed either way is correct. In our example, the 

relative risk reduction of 60 per cent appears larger than the 

absolute risk reduction of 12 per cent. It often helps to look at 

both types of risk to see how significant a change is.

For example, say the absolute risk of a work injury is two 

per 100 workers. Due to an intervention, it drops to one injury 

per 100 workers. This yields a relative risk reduction of 50 per 

cent. Overall, in absolute terms, this means one less injured 

worker per 100.

In another case, say the absolute risk of injury is 50 per 100 

workers, but drops to 25 injuries per 100 workers. This will 

also result in relative risk reduction of 50 per cent. However, 

this translates to 25 fewer injured workers per 100. Even 

though the relative risk reduction is the same in both cases, 

the second intervention has a greater impact overall.

Let’s go back to the example of the newspaper article on the 

risk of clotting due to the presence of a certain gene. The arti-

cle reported on the relative risk; i.e. you are 800 per cent more 

likely to get a blood clot relative to those who don’t have the 

gene. However, knowing the absolute risk is important. If the 

absolute risk of getting a blood clot is one in 1,000, and you 

are at an 800 per cent increased risk of getting a blood clot 

because of the presence of the gene, your risk is now eight in 

1,000. So there’s still a very very good chance you won’t get a 

blood clot at all.
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Bias
Bias refers to flaws in the design, conduct and analysis 
of research that can (usually unintentionally) creep into a 
study and skew the findings. If researchers can’t limit the 
possibility of bias, they should at least report how it might 
impact their results.

A study often begins with a simple question. Researchers are 

motivated to find answers to the question and add to the over-

all knowledge on a topic.

However, once they publish their findings, you might hear 

other researchers say that they are sceptical of the results 

because they may be biased. What exactly are these research-

ers concerned about and why?

In a research sense, bias does not refer to an intentional 

attempt to mislead. Rather, it refers to flaws in the design, 

conduct and analysis that creep into the study that results in a 

systematic shift in the findings.

Bias can be introduced at any stage of research — from 

the initial stages when researchers are collecting data, to the 

analysis of results, to the publication of studies. Bias can also 

refer to things that happen before the study has started (for 

example, the construction of questions to include is often 

biased by previous research); or things that happen (or don’t) 

when the study ends — such as publication bias (see below).

Here are some common forms of bias that occur.

Selection bias
Suppose you want to examine what young people think about 

their risk of getting injured at work. Ideally, you would ask 

this question to a random group of young workers. However, 

due to the difficulty in finding young workers, you select 

only those young workers who visit a young workers’ safety 

website. Your selection would be biased. It is likely that this 

group has a better knowledge of workplace safety, or is more 

concerned about getting injured at work because they have 

visited a website with safety information. Based on the re-

sponse from this group you might conclude that young people 

think their risk of getting injured at work is high. But because 

of the selection bias, this finding might be higher than the ac-

tual views of young workers in general. (See page 38 for more 

on selection bias)

Attrition bias
Often researchers are concerned about how conditions — 

such as unemployment — affect people over time. You might 

have a large, diverse sample of workers from the population 

at the start of your study. Let’s say you want to see how stress 

levels are related to unemployment, so you survey these work-

ers. However, over time those people who are unemployed for 

a long period might move, perhaps to find work elsewhere. As 

a result, they might not be included in a follow-up measure-

ment a year later. Because these workers are no longer in your 

study, it may impact on your results. This is called attrition 

bias.

Measurement bias
Sometimes it’s difficult for researchers to measure what they 

plan to. They might use a proxy or substitute for what they 

really want to measure. For instance, it might be difficult for 

researchers to go into a company and ask to measure work-

place injuries, so they might use the company’s lost-time work 

injury claims as a proxy for workplace injuries. In this situa-

tion, researchers might end up with a less accurate measure 

that may lead to different results.

Analysis bias
Researchers may conduct an analysis that does not consider 

or adjust for another potential explanation for the findings. 

One example would be an analysis of young workers’ injury 

risk that does not account for how long they’ve worked or 

for the hazards in their workplace. Inexperience in general 

or high-hazard working conditions can also affect the risk of 

injury.

Publication bias
This is a type of bias in which researchers only submit studies 

with results that they think are likely to be published in scien-

tific journals. It can also occur when editors of these journals 

accept or reject articles for publication based on the direction 

or strength of the findings. For instance, a study that shows an 

intervention works might be selected over a study that shows 

it has no effect.

Bias can occur in almost any study, although researchers 

first try and limit the possibility of bias. However, sometimes 

this is not possible, so the researcher’s job is to better under-

stand and report how the bias they encountered might impact 

on their results.

 



10 • Institute for Work & Health (IWH)

Blinding
Blinding is a practice whereby study participants are 
prevented from knowing certain information that may 
somehow influence them and, in turn, affect the study’s 
results.

If you’ve done a taste test and selected ‘Cola X’ over ‘Cola 

Y,’ then you’ve already experienced what scientists call 

“blinding.”

Blinding, in research, refers to a practice where study par-

ticipants are prevented from knowing certain information that 

may somehow influence them—thereby tainting the results. 

Coke versus Pepsi taste trials are conducted in this way: Par-

ticipants are, literally, blindfolded as they sample the two colas 

and indicate their preference.

Blinding (also called masking) is typically used in random-

ized controlled trials (RCTs). In RCTs, people are randomly 

assigned to two (or more) groups. One group receives the 

intervention, such as a new treatment, while the control group 

receives nothing, usual care or a placebo—a fake treatment, 

an inactive substance like sugar, distilled water or saline 

solution— when the treatment is a new drug. The research-

ers then study what happens to each group. Any differences 

in outcome can then be linked to the intervention, not to the 

participants’ knowledge of whether they were receiving a new 

treatment or their usual care.

To ensure to the highest degree possible that the interven-

tion is responsible for any noted differences between the two 

groups, people involved in gathering or analyzing the data 

might also be blinded to knowing who is being given the treat-

ment and who is not. This blinding can include clinicians, data 

collectors, outcome assessors and data analysts. However, 

certain groups sometimes cannot be blinded, such as surgeons 

or psychologists who provide active intervention.

Why blinding is necessary
Blinding of one or more parties is done to prevent observer 

bias. This refers to the fact that most (if not all) researchers 

will have some expectations regarding the effectiveness of 

an intervention. Blinding of observers provides a strategy to 

minimize this form of bias. For example, a clinician who has 

established expertise in a certain procedure may believe that 

his or her approach is superior. If involved in a trial to ex-

plore this procedure, the clinician may tend to treat patients 

assigned to his or her procedure differently than patients as-

signed to the competing intervention.

Blinding is also done to address or control for the placebo 

effect, a phenomenon in which a simulated (and ineffective) 

treatment can sometimes improve a patient’s condition, simply 

because the person has the expectation that it will be benefi-

cial. Expectation is key in the placebo effect.

Landmark study: an example of blinding
In 2002, a study published in the New England Journal of 
Medicine reported on a controlled trial of arthroscopic surgery 

for osteoarthritis of the knee. Arthroscopic surgery is the most 

commonly performed type of orthopedic surgery. In this study 

by Moseley et al., patients with osteoarthritis—defined as a 

group of mechanical abnormalities involving the degradation 

of joints—were divided into two groups: one receiving cor-

rective surgery (arthroscopic debridement), and the other 

receiving fake or sham surgery.

The patients were blinded in the sense that they did not 

know whether they were receiving the real or sham surgery. 

The results were quite surprising: Both groups of patients im-

proved equally well regardless of whether or not they received 

the real surgery. This is an excellent example of the placebo 

effect and the need for blinding, since it implies that belief of 

recovery alone can have an effect, even on a mechanical knee 

problem.
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Case control studies start with an outcome (such as a dis-
ease) and work backwards to find exposures that may be 
linked to it.

Let’s say your mother was recently diagnosed with breast can-

cer and so, too, was her best friend. The two worked together 

for 30 years at the town’s food canning plant. You wonder if 

something in the workplace was the cause of their cancer.

Researchers can help find answers to this type of question 

using a case control study. This study design helps determine 

if a previous exposure is linked to a current condition, such as 

having a disease.

A case control study compares people who already have 

a condition or disease (these are the cases) with people 

who do not have the condition or disease but are otherwise 

similar (these are the controls). It then looks back to see if 

an exposure to something in particular (e.g. at work, in the 

environment, lifestyle) was more likely in the group with the 

condition than in the group without.

Not all studies with cases and controls are case control stud-

ies. Some studies start with a group of people with a known 

exposure and a comparison group (the control group) without 

the exposure and follow them forward to see what happens. 

This is the case with some cohort studies.

Case control studies are always retrospective; they always 

look back. The outcomes are always known—the cases do 

have the condition and the controls do not—and the research-

ers trace backwards to identify possible exposures or factors 

that may have contributed to the condition.

Case control study in action
Let’s take our example of breast cancer and work to show 

how a case control study might provide some answers. The 

researchers begin by turning to the regional cancer treatment 

centre to find women within the town and the surrounding 

area who developed a new case of breast cancer during a 

six-year period and are willing to participate in the study. The 

researchers identify 1,000 women, the cases.

The researchers then select controls. With computer-

generated phone numbers, homes are randomly called to find 

women in the region without breast cancer of about the same 

age who are willing to take part in the study. They find 1,150 

women, the controls.

Both cases and controls are asked about their personal, 

lifestyle and reproductive pasts, including information about 

factors known to be associated with breast cancer (e.g. body 

mass index, drinking, smoking, menstrual and menopause 

history, use of hormone replacement therapy, birth control, 

family history). They are also asked about the jobs they’ve 

had over the years and for how long. The researchers take this 

job information to code occupation, industry and exposure, 

allowing them to figure out likely exposures to cancer-causing 

materials and endocrine disruptors (i.e. chemicals that inter-

fere with the hormone system).

By comparing the two groups, the researchers find that, tak-

ing the other risk factors into account, the women with breast 

cancer are more likely to have worked in certain occupations, 

including food canning. Although the study cannot say that 

your mother and her best friend’s breast cancer was caused by 

work—case control studies cannot show causation—it does 

indicate that their breast cancer may be linked to their work.

Case control studies have a number of drawbacks. They 

cannot show causation, as mentioned; nor can they provide 

information on incidence (e.g. what percentage of people have 

a condition). As well, the information collected can be faulty 

or incomplete because it depends on people accurately and 

truthfully recalling their past.

Nonetheless, case control studies are relatively quick, 

inexpensive and easy. Thus, they are often used to conduct 

preliminary investigations of suspected risk factors. If a link is 

found, a more costly study that starts with a group of people 

and follows them forward may be justified.

 

Case control study
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A cohort study follows a group of people over time to under-
stand the relationship between some attribute shared by 
the group of people at the beginning of the study and the 
eventual outcome. 

Ever wonder why some injured workers return to work (RTW) 

after six months while others do so after a year or more? A 

cohort study that follows and observes a group of people who 

have something in common (namely, a workplace injury) 

could help answer this question.

A “cohort” is any group of people with a shared character-

istic. For example, in a birth cohort, what’s common to all 

individuals is their birth year.   

In a cohort study, the study participants are followed over 

time—from weeks to years, depending on the time frame. The 

goal is to understand the relationship between some attribute 

related to the cohort at the beginning of the study and the 

eventual outcome.   

There are five steps in a cohort study:

1.	 Identify the study subjects; i.e. the cohort population.

2.	 Obtain baseline data on the exposure; measure the ex-

posure at the start. (The exposure may be a particular 

event, a permanent state or a reversible state.)  

3.	 Select a sub-classification of the cohort—the unexposed 

control cohort—to be the comparison group.

4.	 Follow up; measure the outcomes using records, 

interviews or examinations. (Note: Outcomes must 

be defined in advance and should be specific and 

measurable.)

5.	 Do the data analysis where the outcomes are assessed 

and compared.

Cohort study in action
Returning to our example, a cohort study could follow a group 

of injured workers who were off work (and filed musculoskel-

etal-related claims) and observe when these workers returned 

to work.

Researchers in such a study could determine what’s affect-

ing the workers’ RTW. At six and 12 months post-injury, the 

workers could be interviewed about their readiness to RTW. 

They may be asked if they have returned to work and, if so, 

if they were able to meet their job demands. They might be 

asked about their organization’s policies and practices, and if 

accommodated work had been offered and accepted.

It may come to light that the workers who felt their compa-

nies were doing well in terms of policies and practices were 

more likely to be back at work at six months, for example, 

than those who didn’t. If this were the case, this cohort study 

could likely tell us that workplace policies play an important 

role in RTW. Researchers could use these results to develop a 

tool to identify readiness for RTW and guidelines surrounding 

successful RTW.

Strengths of a cohort study include the fact that multiple 

outcomes can be observed. Weaknesses are that they can be 

expensive and time-consuming because they can involve large 

populations and long periods of time.

In terms of levels of evidence for establishing relationships 

between exposure and outcome, cohort studies are consid-

ered second to randomized controlled trials (RCTs) because 

RCTs limit the possibility for biases by randomly assigning one 

group of participants to an intervention/treatment and another 

group to non-intervention/treatment or placebo. Cohort 

studies are observational—meaning the researcher observes 

what’s happening or naturally occurring, measures variables 

of interest and draws conclusions.  RCTs, in contrast, are 

experimental—meaning the researcher manipulates one of the 

variables (assigns treatments, for example) and determines 

how this influences the outcome.

If cohort studies are second-best, then why use them? 

They may be the only way to explore certain questions. For 

example, it would be unethical to design an RCT deliberately 

exposing workers to a potentially harmful situation.

 

Cohort study
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A confidence interval is the range of values above and 
below a finding in which the actual value is likely to fall. It 
represents the accuracy or precision of an estimate.

Imagine that you are trying to find out how many Canadians 

have taken at least two weeks of vacation in the past year. You 

could ask every Canadian about his or her vacation sched-

ule to get the answer, but this would be expensive and time 

consuming.

To save time and money, you would probably survey a small-

er group of Canadians. However, your finding may be different 

from the actual value if you had surveyed the whole popula-

tion. That is, it would be an estimate. Each time you repeat 

the survey, you would likely get slightly different results.

Commonly, when researchers present this type of estimate, 

they will put a confidence interval (CI) around it. The CI is a 

range of values, above and below a finding, in which the actual 

value is likely to fall. The confidence interval represents the 

accuracy or precision of an estimate.

How confidence intervals are used
We often see CIs in newspapers when the results of polls are 

released. An example from the Globe and Mail newspaper 

regarding the mayoral race in Toronto read, “52 per cent [of 

survey respondents] said they would have voted for Mr. Miller 

if the election had been held last week. The margin of error is 

plus or minus 4.4 percentage points, 19 times out of 20.”

The “margin of error” represents the confidence interval. 

It is the range from 47.6 to 56.4 per cent; that is, 52 per cent 

plus or minus 4.4 percentage points. The researchers are con-

fident that if other surveys had been done, then 95 per cent of 

the time — or 19 times out of 20 — the findings would fall in 

this range.

The 95 per cent confidence level is used most often in 

research; it is a generally accepted standard. However, re-

searchers can calculate CIs at any level of significance, such 

as 90 per cent or 99 per cent. The significance level simply 

indicates how precise they are willing to be.

Factors influencing a confidence interval
A narrow or small confidence interval indicates that if we 

were to ask the same question of a different sample, we are 

reasonably sure we would get a similar result. A wide con-

fidence interval indicates that we are less sure and perhaps 

information needs to be collected from a larger number of 

people to increase our confidence.

Confidence intervals are influenced by the number of people 

that are being surveyed. Typically, larger surveys will pro-

duce estimates with smaller confidence intervals compared to 

smaller surveys. Other factors will include the accuracy of the 

measurements in a survey. If measurements are less accurate, 

it will likely increase confidence intervals.

Why are confidence intervals important?
Because confidence intervals represent the range of scores 

that are likely if we were to repeat the survey, they are im-

portant to consider when generalizing results. In the example 

with Mr. Miller, how confident would you be in saying that 

more than half of Torontonians would vote for Miller?

If you repeated the survey again, you may get a value of 47.6 

per cent, which lies within your 95 per cent CI. Therefore, you 

may not be comfortable with such a statement. On the other 

hand, you would likely be more confident saying that at least 

45 per cent of voters will cast their vote for Miller.

 

Confidence intervals
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A confounding variable is an unforeseen or unaccounted-for 
factor that may call into question the finding of a relation-
ship between two other factors or variables. In other words, 
it “confounds” the relationship by being the “something 
else” that may explain the relationship.

Are workers who wear supportive back belts on the job less 

prone to back strain compared to those who don’t? Before 

researchers design a study to answer this question, they must 

carefully consider all the variables that could affect their find-

ings. If they fail to do so, the results of their study might not 

be valid.

Let’s say a study found that, over a 12-month period, one 

group of lumber-yard workers who wore back belts had half 

the rate of back strain compared to another group of workers 

who didn’t wear the belts. (In this case, wearing the belts is 

what researchers call the “independent variable,” while the 

occurrence of back strain is the “dependent variable.”)

Based on this finding, it would be tempting to recommend 

that all lumberyard workers protect themselves from back 

strain by wearing supportive belts. But are the study results 

valid? Was one group of workers protected by the independent 

variable — their use of back belts — or was something else 

going on?

The “something else” would be a confounding variable, 

defined as “an unforeseen and unaccounted-for variable that 

jeopardizes the reliability and validity of an experiment’s 

outcome.”

Before designing their study, the researchers should have 

known that the two groups of workers — who were employed 

in different lumberyards — didn’t do the same amount of 

heavy lifting. One lumberyard typically used forklifts to load 

and deliver orders by truck, while the workers at the other 

location were sometimes expected to load orders into the 

customers’ vehicles. So this variable — the amount of lifting 

— rather than back belt use could explain the different rates 

of back strain in the two groups.

Variables that might introduce errors
When researchers design a study or interpret data, they 

must make every effort to account for variables that might 

introduce errors into the results. These include participant 

variables like age, gender and education, situational variables 

— some aspect of the task or environment — or even tempo-

rary variables like hunger or fatigue that might influence what 

happens during the study.

It’s important to understand that while many such variables 

exist, they are not necessarily confounding in each and every 

study. Also, it would be impossible for researchers to control 

for every possible confounding variable. In the real world, they 

try to control only those variables that might be relevant to 

the outcome.

One way researchers try to avoid confounding variables is to 

use a randomized experiment design. With randomization, all 

the background characteristics should be similar in the groups 

being studied, which minimizes the influence of confounding 

factors.

In the back belt study, they might have observed or surveyed 

the workers at both lumberyards to determine how much 

lifting they actually did and then designed the study compar-

ing the effects of back belt use in two more similar groups of 

workers. Researchers can also use a number of analytic and 

statistical strategies such as stratified analysis and multivari-

ate analysis to control for certain variables and thus protect 

the validity of their findings.

 

Confounding variables
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Cross-sectional studies make comparisons at a single point 
in time, whereas longitudinal studies make comparisons 
over time. The research question will determine which ap-
proach is best.

Study design depends greatly on the nature of the research 

question. In other words, knowing what kind of information 

the study should collect is a first step in determining how the 

study will be carried out (also known as the methodology).

Let’s say we want to investigate the relationship between 

daily walking and cholesterol levels in the body. One of the 

first things we’d have to determine is the type of study that 

will tell us the most about that relationship. Do we want to 

compare cholesterol levels among different populations of 

walkers and non-walkers at the same point in time? Or, do we 

want to measure cholesterol levels in a single population of 

daily walkers over an extended period of time?

The first approach is typical of a cross-sectional study. The 

second requires a longitudinal study. To make our choice, we 

need to know more about the benefits and purpose of each 

study type.

Cross-sectional study
Both the cross-sectional and the longitudinal studies are 

observational studies. This means that researchers record 

information about their subjects without manipulating the 

study environment. In our study, we would simply measure 

the cholesterol levels of daily walkers and non-walkers along 

with any other characteristics that might be of interest to us. 

We would not influence non-walkers to take up that activity, or 

advise daily walkers to modify their behaviour. In short, we’d 

try not to interfere.

The defining feature of a cross-sectional study is that it can 

compare different population groups at a single point in time. 

Think of it in terms of taking a snapshot. Findings are drawn 

from whatever fits into the frame.

To return to our example, we might choose to measure cho-

lesterol levels in daily walkers across two age groups, over 40 

and under 40, and compare these to cholesterol levels among 

non-walkers in the same age groups. We might even create 

subgroups for gender. However, we would not consider past 

or future cholesterol levels, for these would fall outside the 

frame. We would look only at cholesterol levels at one point in 

time.

The benefit of a cross-sectional study design is that it allows 

researchers to compare many different variables at the same 

time. We could, for example, look at age, gender, income and 

educational level in relation to walking and cholesterol levels, 

with little or no additional cost.

However, cross-sectional studies may not provide definite 

information about cause-and-effect relationships. This is 

because such studies offer a snapshot of a single moment in 

time; they do not consider what happens before or after the 

snapshot is taken. Therefore, we can’t know for sure if our 

daily walkers had low cholesterol levels before taking up their 

exercise regimes, or if the behaviour of daily walking helped to 

reduce cholesterol levels that previously were high.

Longitudinal study
A longitudinal study, like a cross-sectional one, is observa-

tional. So, once again, researchers do not interfere with their 

subjects. However, in a longitudinal study, researchers con-

duct several observations of the same subjects over a period of 

time, sometimes lasting many years.

The benefit of a longitudinal study is that researchers are 

able to detect developments or changes in the characteristics 

of the target population at both the group and the individual 

level. The key here is that longitudinal studies extend be-

yond a single moment in time. As a result, they can establish 

sequences of events.

To return to our example, we might choose to look at the 

change in cholesterol levels among women over 40 who walk 

daily for a period of 20 years. The longitudinal study design 

would account for cholesterol levels at the onset of a walk-

ing regime and as the walking behaviour continued over time. 

Therefore, a longitudinal study is more likely to suggest cause-

and-effect relationships than a cross-sectional study by virtue 

of its scope.

In general, the research should drive the design. But 

sometimes, the progression of the research helps determine 

which design is most appropriate. Cross-sectional studies can 

be done more quickly than longitudinal studies. That’s why 

researchers might start with a cross-sectional study to first 

establish whether there are links or associations between 

certain variables. Then they would set up a longitudinal study 

to study cause and effect.
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A method of analysis called “difference in differences” 
helps identify the effect of an intervention when interven-
tion and control groups have meaningful differences. 

Experimental studies are typically designed so that research-

ers can learn about the impact of an intervention (a drug, a 

therapy or a program). They do this by looking for different 

outcomes between the group that received the intervention 

(the intervention group) and the group that did not (the con-

trol group).

But what if the people in both groups start out with impor-

tant differences to begin with? That’s when researchers use a 

method of analysis called difference in differences to identify 

the effect of the intervention.

In controlled settings such as a randomized controlled trial, 

study participants are randomly placed in either the interven-

tion group or the control group. That step helps make sure 

that the groups start out relatively the same so that changes 

in the intervention group can be more easily attributed to the 

intervention. In natural experiments (or observational stud-

ies), researchers don’t have this ability to randomly assign 

participants.

That’s because, in natural experiments, the interventions 

happen naturally, as the name would suggest. For example, a 

study of a school board policy that requires all school students 

to be vaccinated, of a province’s policy to cut a cheque to 

everyone who lives in it so no one lives below a certain level of 

income, or of a town council decision to make helmets manda-

tory for all cyclists would all be natural experiments.

When such policies or programs are offered in one school 

board, one province or one town but not others, they offer 

researchers a valuable opportunity to study the impact of 

the intervention. But in natural experiments such as these, 

participants may start out with important differences; i.e. the 

people in the school board, province or town subject to the 

policy or program may already be different in some meaning-

ful way from those with whom they are being compared. To 

overcome this, researchers don’t compare one group’s out-

comes to those of the other. Instead, they look for how much 

each group changes over a period of time with respect to a 

certain outcome. Then they compare the extent of the change 

between the two groups.

An example of difference in differences
Let’s take the helmet bylaw as an example. If you as a re-

searcher want to look at the effect of that bylaw—introduced 

by Town A, let’s say—you might hypothesize that it reduces 

head injuries. As a result, you take a close look at stats from 

emergency rooms to see whether head injuries from cycling 

accidents have gone down. For a control group, you look at 

similar stats in a neighbouring town of the same size—Town 

B—where a mandatory helmet bylaw does not exist.

But you know there may be prior differences between Town 

A and Town B. They may differ in road and traffic conditions 

or in how willingly people wear helmets when cycling, whether 

required by law or not. As a result, you don’t simply look at 

the two towns’ post-intervention stats—the number of head 

injuries one year after the bylaw took effect, for example—and 

draw a conclusion based on those two numbers. Rather, you 

also look at head injury stats prior to the bylaw in both towns. 

If head injury stats in Town A go down by 25 per cent but only 

by 15 per cent in Town B, you attribute that 10-per-cent dif-

ference to the effect of the bylaw.

This approach has some limitations. One is the possibility 

that you might be seeing regression to the mean. That would 

be the case if pre-bylaw injury stats in Town A were extreme 

or exceptional to begin with. If so, there’s a strong statistical 

likelihood that the extreme injury rates seen at that point in 

time would naturally decline towards a lower average.

Another caveat to this method is that it assumes injury 

trends for both towns would have been the same if not for the 

intervention. Even if you gathered data at multiple points in 

time to make sure that the trends were the same leading up 

to the new bylaw, you have to be alert to the possibility that 

something else might be taking place to change that trend 

during the period of your study.
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A DOI (or digital object identifier) is a permanent name 
given to studies, publications and other Internet resources 
to ensure a permanent link to an electronic article even 
when its’ URL has changed.

If you read published research, you’ve probably noticed a 

vehicle for permanently housing scholarly material: the DOI or 

Digital Object Identifier. An alphanumeric code, it solves a lot 

of problems for anyone searching for documents in the vast 

arena of cyberspace. 

A DOI is a permanent name given to documents, publica-

tions and other resources on the Internet, which is used rather 

than a URL (i.e. a typical web address). A URL can change 

over time but a DOI cannot. The International DOI Founda-

tion, which invented and controls the system, defines a DOI as 

“a name, not a location, for an entity on digital networks.”

Because a DOI is meant to never change, it provides a 

permanent link to any electronic article. Most electronically 

available articles have DOIs, and they can usually be found 

printed on the article itself. DOIs look something like this: 

doi:10.1111/j.1439-0426.1997.tb00116.x

DOIs are not dissimilar to a book’s ISBN—that is, the idea of 

having a number associated with a document is not new. But 

for libraries, the change is meaningful because it makes things 

easier. DOIs solve a lot of problems and allow those in library 

sciences to locate and verify electronic documents quickly 

and efficiently. They allow librarians to focus and provide a 

unique identifier to others who would like to locate specific 

documents.

DOIs are particularly helpful for several reasons:

•	 URLs are not stable and often disappear;

•	 print journals often have standard bibliographic infor-

mation (volume, issue, page numbers) that help track 

down articles, but electronic journals and documents 

may not;

•	 researchers sometimes use titles for conferences, lay 

articles and reports that are very similar to those used 

for journal articles, and it can be difficult to differentiate 

between them when searching by title; and

•	 Google-type searches can lead to hundreds of hits, mak-

ing it hard to locate and verify documents.

DOI adoption has been rapid. The International DOI Founda-

tion was established in 1998. Elsevier, the Amsterdam-based 

health and science, started using DOIs on all of its journal 

articles around 2003. By late April 2011, more than 50 million 

DOI names had been assigned by some 4,000 organizations.

However, unlike URLs, the DOI system is not open to 

everyone. Only organizations that meet the necessary contrac-

tual obligations and are willing to pay can assign DOIs.

Although some journals are not yet participating in the move 

to DOI, it is expected that they may do so in time, as part of 

the larger electronic continuum.

How to find an article using a DOI
When you see a DOI, most of the time, you can click on it to 

access the article, provided you have the necessary access 

rights. In case you see a DOI in a print document, you can do 

the following three steps:

1.	 Copy the DOI of the document you want to open.

2.	 Go to: www.doi.org.

3.	 Enter the entire DOI in the text box provided, and then 

click ‘Go.’

Otherwise you can type the DOI into a search engine, such 

as Google, and the relevant study usually comes up.
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The cornerstone of public health, epidemiology investigates 
which groups in a population are affected by disease, and 
why.

If you’ve ever wondered whether vegetarians live longer than 

meat-eaters, or why some people suffer from chronic pain and 

others don’t, or what the health consequences are of working 

nights, you’re asking the same questions asked by epidemiolo-

gists—researchers who work in the field of epidemiology.

Epidemiology is considered the basic science of public 

health. In simple terms, it’s the study of who gets sick and 

why. “Epidemiology” literally means “the study of what is upon 

the people.” The word comes from the Greek epi, meaning 

“upon,” demos, meaning “people,” and logos, meaning “study.

In the early days, epidemiology concentrated on studying 

diseases such as cholera. Today, epidemiology is applied to all 

kinds of health-related conditions—diseases (e.g. influenza, 

cancer, depression), health problems (e.g. obesity, high blood 

pressure), injuries (e.g. work-related, traffic-related) and 

social problems (e.g. gambling, domestic violence). Its role is 

to describe who is affected by these conditions, why, and what 

can be done to treat and prevent them.

Population versus individual
A distinguishing feature of epidemiology is that it studies 

health-related conditions at the population level, as opposed 

to the individual level. A good way to understand this is to 

compare the differing approaches of clinicians and epidemi-

ologists to diseases.

Doctors and other clinicians are largely concerned with the 

effects of disease within a single person. They work one-on-

one with patients to diagnose problems and determine what 

can be done to make them healthier.

Epidemiologists, on the other hand, are concerned with 

how diseases affect society as a whole. They study groups of 

people to diagnose and respond to illnesses in populations: 

how many are affected (i.e. prevalence), who is affected and 

why (i.e. determinants of health), and what works and what 

doesn’t to cure or prevent these illnesses at a societal level 

(e.g. treatment protocols, public health interventions).

Let’s look more closely at how epidemiologists carry out 

their studies of disease and other conditions. To understand 

the “who,” epidemiologists seek to describe what part of the 

population is affected. How does the prevalence of a disease 

vary by age, sex, ethnicity, income, geography, work role and 

so on? This analysis goes well beyond demographics.  It might 

relate to genetic disposition, childhood exposure, living condi-

tions and more.

Difficult to find cause
Understanding who gets sick is often the first step in learning 

what factors might be behind why people get sick. Sometimes, 

epidemiologists rely on other fields of science to get to the 

“why.” They might learn from geneticists that certain types 

of people are predisposed to an illness. That might then lead 

them to probe more deeply about other factors that might 

protect certain individuals within that group from the disease.

Although epidemiologists seek to understand the why, they 

rarely get to say “because.” Researchers must clear many hur-

dles before they can pronounce the cause of a health outcome. 

How strong is the association between event A and outcome 

B? Does A always occur before B? Does B always follow A? 

If A is altered in some way, is B altered too, and to the same 

degree? The more researchers can say yes to these questions, 

the closer they get to being able to claim A is the cause of B.

These criteria for causation should give you an idea why epi-

demiological studies are so difficult to carry out. They’re also 

why epidemiologists are often so circumspect when stating 

the findings of their research.

Epidemiological studies are important. They form the 

bedrock for sound public health policies and strategies, thus 

protecting and improving the health of entire populations.
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Generalizability refers to the degree to which the results of 
a study can be applied to a larger population, or the degree 
to which time- and place-specific findings, taken together, 
can result in a universal theory.

The goal of scientific research is to increase our understanding 

of the world around us. To do this, researchers study different 

groups of people or populations. These populations can be as 

small as a few individuals from one workplace or as large as 

thousands of people representing a cross-section of society. 

But how do we know if a study’s results can be applied to 

another group or population?

To answer this question, we first need to understand the 

concept of generalizability. In its simplest form, generaliz-

ability can be described as making predictions based on past 

observations.

In other words, if something has often happened in the past, 

it will likely occur in the future. In studies, once researchers 

have collected enough data to support a hypothesis, they can 

develop a premise to predict the outcome in similar circum-

stances with a certain degree of accuracy.

Two aspects of generalizability
Generalizing to a population. Sometimes when scientists talk 

about generalizability, they are applying results from a study 

sample to the larger population from which the sample was 

selected. For instance, consider the question, “What percent-

age of the Canadian population supports the Liberal party?” 

In this case, it would be important for researchers to survey 

people who represent the population at large. Therefore they 

must ensure that the survey respondents include relevant 

groups from the larger population in the correct proportions. 

Examples of relevant groups could be based on race, gender 

or age group.

Generalizing to a theory. More broadly, the concept of gener-

alizability deals with moving from observations to scientific 

theories or hypotheses. This type of generalization amounts 

to taking time- and place-specific observations to create a 

universal hypothesis or theory. For instance, in the 1940s 

and 1950s, British researchers Richard Doll and Bradford Hill 

found that 647 out of 649 lung cancer patients in London hos-

pitals were smokers. This led to many more research studies, 

with increasing sample sizes, with differing groups of people, 

with differing amounts of smoking and so on. When the results 

were found to be consistent across person, time and place, the 

observations were generalized into a theory: “cigarette smok-

ing causes lung cancer.”

Requirements for generalizability
For generalizability we require a study sample that represents 

some population of interest — but we also need to understand 

the contexts in which the studies are done and how those 

might influence the results.

Suppose you read an article about a Swedish study of a new 

exercise program for male workers with back pain. The study 

was performed on male workers from fitness centres. Re-

searchers compared two approaches. Half of the participants 

got a pamphlet on exercise from their therapist, and half were 

put on an exercise program led by a former Olympic athlete. 

The study findings showed that workers in the exercise group 

returned to work more quickly than workers who received the 

pamphlet.

Assuming the study was well conducted, with a strong 

design and rigorous reporting, we can trust the results. But to 

what populations could you generalize these results?

Some factors that need to be considered include: How 

important is it to have an Olympian delivering the exercise 

program? Would the exercise program work if delivered by 

an unknown therapist? Would the program work if delivered 

by the same Olympian but in a country where he or she is not 

well-known? Would the results apply to employees of other 

workplaces that differ from fitness centres? Would women 

respond the same way to the exercise program?

To increase our confidence in the generalizability of the 

study, it would have to be repeated with the same exercise 

program but with different providers in different settings (ei-

ther worksites or countries) and yield the same results.
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Documents and other information that haven’t gone through 
peer review before being published are referred to as “grey 
literature.” Magazine articles and conference proceedings, 
for example, fall in this category.

If you were a busy practitioner seeking information on man-

aging back pain, where would you turn: a blog by a person 

describing her experiences, a fact sheet from a reputable 

hospital, a research study in a scientific journal or a tabloid 

newspaper article? 

We all apply a level of trust to information based on the 

source and the quality we associate with it. Plus, time 

demands and our access to information or our ability to under-

stand it can also influence what we choose.

Scientists generally place the most trust in information 

published in journals that use the peer-review process. “Peer 

review” means that each study submitted to a journal is sent 

by its editors to two or three other experts in that field. These 

experts, or peers, provide an anonymous critique with a view 

to improve the write-up of the study. If they don’t think the 

study meets certain scientific standards, they might advise 

against publishing it at all. Peer review helps to maintain sci-

entific standards.

Practitioners in workplaces may not have access to peer-

reviewed journals, or the time or expertise to wade through 

scientific text. They’re more likely to turn to other sources of 

information that they trust. Examples could be trade pub-

lications, government reports, survey results from a polling 

company or technical reports.

These documents are all considered “grey literature.” The 

term grey literature comes from the uncertainty of the status 

of this information. Although there are several formal defini-

tions, grey literature is essentially any document that hasn’t 

gone through peer review for a publication. It can also include 

conference proceedings or doctoral theses.

Challenges with grey literature
When IWH reviewers conduct systematic reviews on a topic, 

they search for studies on that topic in peer-reviewed journals. 

We’ve found that practitioners who are consulted during re-

views sometimes ask us to include the grey literature as well, 

to make sure that the search is as comprehensive as possible.

One concern of reviewers is the scientific quality of the stud-

ies. If an article doesn’t go through peer review, it’s possible 

for the author to make claims or interpretations that aren’t 

supported.

Until recently, it has been more difficult to systematically 

search the grey literature than peer-reviewed studies. These 

documents often aren’t indexed (or catalogued) in the major 

databases that are typically and systematically searched in 

reviews. It usually requires extra effort to find and get copies 

of these documents.

The format of a grey literature document can be quite 

diverse, unlike scientific papers that follow the structure of 

presenting background information, study methods, results 

and a discussion. So it’s more difficult for reviewers to system-

atically extract information from grey literature as they do for 

peer-reviewed papers.

Benefits of grey literature
Grey literature documents can provide a richer source of 

detail than a scientific study. Because they aren’t tied to a 

conventional structure, they can be longer and provide more 

detail. Research results can be written in a style that is more 

accessible and useful to a practitioner than a scientific paper.

Grey literature can also be published more quickly since it 

does not have to go through the potentially lengthy peer-re-

view process. And in cases where there isn’t much information 

on a topic in peer-reviewed research, grey literature may 

provide a valuable source of information.

Finally, grey literature is becoming easier to find. Increas-

ingly, it is available on the Internet, and search engines and 

databases are providing ways of locating it.

Grey literature can provide a systematic review with an ad-

ditional source of rich information, depending on the topic and 

the nature of the research. The challenges and benefits need 

to be weighed against each other when deciding on whether to 

include it in a systematic review.
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If you’re a grounded theorist, you engage a ‘zig-zag’ ap-
proach to research—jumping from the field to the drawing 
table, then back again—in an ever-changing process of fine-
tuning your findings. Grounded theory is all about having 
an open mind and seeing where the data take you.

Traditionally, scientists collect information to test a potential 

explanation or assumption. For example, let’s say you are 

studying the role of supervisors in the return to work (RTW) 

of injured workers. Based on existing research, you might 

hypothesize that supervisors facilitate RTW in an important 

way, and then subsequently design a survey that asks workers 

about the role of supervisors to test this hypothesis.

Grounded theory, used in qualitative research, takes a differ-

ent approach. First coined in the 1960s, it was an alternative 

to the mainstream approach in which information was col-

lected to test a theory. Grounded theory emphasizes starting 

from the ground up (i.e. generating theory from data) rather 

than from the top down (i.e. using data to test theory). In 

other words, it favours an inductive approach, rather than a 

deductive one.

Let’s return to our example. Taking the grounded theory ap-

proach, you might enter into the RTW study with similar ideas 

about the role of supervisor support, but you would remain 

open to other theories stemming from the data you collect. 

You might learn something wholly unexpected.

Theoretical sampling
You would start by carefully selecting the people you want to 

interview (“cases”) and the types of workplaces you want to 

observe (“settings”), with the aim of getting the richest pos-

sible information. Your research plan might involve interviews 

or focus groups with injured workers who have and have not 

returned to work, in addition to supervisors and co-workers. 

As well, different types of workplaces, from blue- to white-

collar environments, may be included in the sample. This is 

called theoretical sampling.

Constant comparative method
Next, you would constantly compare the information you gath-

er with what is already known, and refine your explanations 

or theories as you go. This is called the constant comparative 

method and it is central to grounded theory. For example, you 

might compare supervisor/worker relationships across differ-

ent jobs and types of workplaces.

Data might emerge that indicate supervisors are supportive 

when worker absences are brief, but not as supportive when 

the absences get longer. In the end, you may learn that super-

visors play a relatively minor role compared to co-workers.  

This new knowledge would cause you to reconsider your 

previous understanding.

Grounded theory can take researchers in new and fruitful 

directions because it involves an interactive process where the 

overarching goal is to test and refine emerging ideas. It’s easy 

to see how it can broaden the reach of an existing theory be-

cause it forces the researcher to change the scope of the study 

to incorporate new information. As such, grounded theory 

generates a high quality of research, revealing multi-layered 

interpretations of social life. A rich and detailed understanding 

of systems and processes is made possible.
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Internal validity ensures a study’s findings are the result 
of the intervention being studied and not due to chance or 
some other factor. In that sense, internal validity indicates 
how well a study was designed  and carried out to prevent 
systematic errors or bias.

A key aspect of the quality of a study is its internal validity. 

Internal validity, in essence, is whether the study’s findings 

result from the intervention being studied, and are not due to 

chance or some other factor. You could also say that internal 

validity is how well the study was set up and executed to pre-

vent systematic errors or bias.

Let’s take a fictional example to see how this plays out. 

Suppose researchers wanted to study the effectiveness of an 

ergonomics program that included staff training. The program 

was targeted at garment workers, who often experience wrist 

pain. In the study, the workers in one factory completed a test 

of their knowledge of postures to prevent wrist pain. Then an 

ergonomics program and training were introduced. Six months 

later, fewer workers reported pain symptoms and, when tested 

again, their scores were better.

At face value, this sounds like a promising program. But in 

reality, something else could have caused these changes. A 

study with strong internal validity would be set up in a way 

that ruled out other explanations.

Questions to consider
The review team uses a detailed list of questions to ensure 

the researchers have considered these other causes and 

minimized bias. Here are some things the reviewers would be 

looking at:

•	 Did the researchers use a control group of workers 

who didn’t participate in the program? A control group 

provides a way for researchers to see if the program led 

to the changes, as they can check whether any changes 

occurred in the control group.

•	 What else was happening in the workplace that might 

explain the results? For instance, suppose a staff er-

gonomist was hired after the program began. This might 

account for the improvements and would need to be 

considered.

•	 Was it possible that workers, over time, became more 

knowledgeable about preventing injuries on their own?

•	 Did completing the first knowledge test affect results 

the second time around?

•	 Were the workers given the same test, in the same way, 

both times?

•	 Who dropped out of the study before it ended? Maybe 

some workers withdrew because their pain symptoms 

weren’t getting better. Any improvements in pain in 

workers remaining in the study wouldn’t reflect the 

whole truth. The researchers need to look at the reasons 

that people dropped out, to see if this is an issue.

•	 How were workers chosen to participate in the study? 

The researchers need to report on how they selected 

the groups, and the differences between groups. If the 

workers who did the program volunteered, they may be 

more highly motivated and it would affect the findings.

•	 What was the average rate of reported pain before the 

program? Suppose the factory’s management agreed 

to the program because in the previous year, reports 

of pain and work absences increased dramatically, 

far above the average rate each year. However, these 

rates may fluctuate naturally, from year to year. So the 

improvement may just mean the rate is coming back to 

the average.

Internal validity is also influenced by the way that people 

naturally interact. For instance, if workers in the control group 

found out about the program, they might try to do something 

similar themselves. Or, management may decide that having a 

control group is creating too many problems among employ-

ees, and may allow these workers to access the program or 

create a new one for them.

All of these scenarios show how difficult it can be to do 

research in workplaces. They also show how important it is to 

have a well-designed study when you’re trying to find out if a 

program really works.

Overall, the higher the internal validity, the better the qual-

ity of the study. And the more sure we are that the results are 

due to the program, and not due to something else.
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Comparing the terms 

Type Description Example Result

Mean Total sum divided by number of values (8+4+10+4+4+5+4+5+6)/9 5.5

Median Middle value that separates higher half from lower half 4, 4, 4, 4, 5, 5, 6, 8, 10 5

Mode Most frequent number 4, 4, 4, 4, 5, 5, 6, 8, 10 4

Related to numbers-based findings, ‘mean’  is the average, 
‘median’ is the number that separates the higher half from 
the lower half, and ‘mode’ is the value that occurs most 
often.

The game of golf can help to explain the often-misused terms 

of mean, median and mode. Let’s say you golfed nine holes. 

Each number below represents the number of swings it took 

you to sink the ball in the hole. If you’re lucky and you have 

some golf skills, your score is the following:

8, 4, 10, 4, 4, 5, 4, 5, 6

You go back into the clubhouse and are quite pleased with 

your score. You run into your friend and he says that his mean 

score was 6, his median was 7 and his mode was 6. So what 

does that mean (no pun intended)? Did you score better than 

your friend? Well, let’s find out.

Mean
Let’s define the term “mean” as it’s the most common term 

of the three and probably the easiest to explain. Basically, 

the mean – which is also called the average – is the sum of all 

numbers divided by the number of values in the list. In your 

golf score, you would add up all of the numbers (which equals 

to 50) then divide it by 9 (the number of values) and you get 

5.5.

Median
Now, let’s examine median. Basically, the median is the num-

ber that separates the higher half of a sample from the lower 

half. To find the median, arrange the list from lowest value to 

highest value and pick the middle one. Using the golf scores, 

here is the list from lowest to highest. The bolded 5 is the 

median:

4, 4, 4, 4, 5, 5, 6, 8, 10

When to use mean or median
Sometimes, you need to decide if calculating the mean or me-

dian is most appropriate for what you would like determine. 

Hospital length of stay can be an example of data that may be 

skewed if the wrong term is chosen (that is, when most of the 

data values fall to the left or right of the mean). Most people 

stay in a hospital for a few days. However, some patients have 

hospital stays for months on end. In this example, you would 

likely report the median length of hospital stay, which sepa-

rates the higher half from the lower half. In general, however, 

most people report the mean unless you have a good reason 

for not doing so, such as to avoid skewing the data like in the 

hospital example above.

Mode
While not used as frequently as mean or median, mode does 

have a place in certain situations. Mode is the value that oc-

curs most frequently in a set. If you look at your golf scores, 4 

is the one that’s most common so, for that set, 4 is the mode. 

Although mode may not frequently be used in statistics, mode 

is more often used when describing non-numerical things. 

For example, if you’d like to know the most popular newborn 

boy name in Ontario for 2008, you may go to the Government 

of Ontario’s website and find out that Jacob was the most 

popular.

You can remember mode the following way: Mode is the 

value that is in the set Most often.

So getting back to our golf scores example, it looks like that 

you likely shot a better golf score than your friend given that 

you had a better mean, median and mode.
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A type of systematic review, meta-analysis integrates or 
adds the findings from many studies to create one large 
overview. By combining results, it reduces the time and 
energy spent looking at the difference pieces of research. 

When making decisions that affect many people, policy-

makers, clinicians and other decision-makers may turn to 

research to help inform their choices. Single studies on a topic 

do provide some information. However, to increase confidence 

in their decisions, it is better to look at all of the available 

research.

This is where a meta-analysis can help. A meta-analysis is 

a type of systematic review. In a meta-analysis, findings from 

many studies are integrated or “added” in a formal statistical 

analysis to create one large overview.

The steps of a meta-analysis are:

•	 define a narrow, focused question that the meta-analysis 

will seek to answer.

•	 define and follow rigorous criteria for identifying and 

selecting studies to include in the analysis.

•	 collect the data from these studies, and convert esti-

mates or results into a common measure across studies, 

if possible.

•	 combine and analyze the data, and develop conclusions 

to answer the question.

In general, a meta-analysis aims to answer the questions: 

What is the effect of a program or treatment, based on all the 

relevant research to date? How large is the effect?

Meta-analysis in practice
Let’s say you wanted to know if rest breaks reduced the rate of 

low-back pain in a particular work setting. If you gathered all 

the research on rest breaks and low-back pain, you might find 

hundreds of research articles.

You may also find studies so small that you wouldn’t be 

confident about the findings. Various articles might seem to 

contradict each other, with some showing that rest breaks 

reduced low-back pain rates, and others finding they had no 

effect.

As explained earlier, in a meta-analysis these findings or out-

comes would be statistically combined to provide an overall 

answer. But first, they need to be converted into a common 

measure to reach any conclusions, and this can be difficult. 

With low-back pain, different studies might measure back 

pain in workers using different scales or questionnaires. Some 

additional calculations would be needed to achieve a common 

measure.

In some cases, outcomes are routinely based on a common 

measure. For example, in cancer research, one widely used 

outcome is patients’ survival rates five years after diagnosis. 

When many different studies use this common outcome, their 

results are easier to combine.

For a meta-analysis on rest breaks and back pain, the re-

viewer might take study findings using different low-back pain 

scales and calculate a standard “effect” for each study. This 

“effect” becomes the common measure. By statistically com-

bining the effects from all studies, reviewers may see if there 

is an overall effect from rest breaks, and how large the effect 

is. However, the reality is that different studies on a topic may 

not even measure the same outcome, and there might not be a 

way to make all the results comparable.

Let’s now compare how conclusions are expressed in meta-

analysis and other systematic reviews. In the example above, a 

systematic review may show that six out of eight quality stud-

ies show that rest breaks reduce the rate of low-back pain. 

Using a meta-analysis, which integrates the effect from all the 

studies, you might find that the numerical size of this effect is 

very low.

Benefits of meta-analysis
A meta-analysis has many benefits. By combining results into 

one large study, it reduces the time and energy that decision-

makers spend looking at research.

But the real benefit lies in the way meta-analysis can make 

sense of inconclusive and conflicting data from each original 

study. Through meta-analysis, researchers can combine small-

er studies, essentially making them into one big study, which 

may help show an effect. Additionally, a meta-analysis can 

help increase the accuracy of the results. This is also because 

it is, in effect, increasing the size of the study.

By helping to bring into focus the sometimes blurry picture 

developing from the abundance of research evidence on any 

given topic, a meta-analysis is a very effective type of review.
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Research data may have holes for a number of reasons — 
from questions left blank on a survey to people dropping 
out of a study. Sometimes the missing information matters; 
sometimes it doesn’t.

In a researcher’s perfect world, everyone asked to participate 

in a study would say yes, no one would drop out along the 

way, and all items on a questionnaire would be answered.

Alas, researchers don’t operate in a perfect world. The infor-

mation they collect often has holes, and they come up against 

a common challenge in their pursuit of answers to research 

questions: missing data.

Data can be missing for a number of reasons. Study partici-

pants may not answer a certain survey question because they 

don’t see how the question applies to them. This would be the 

case if a survey asked, “In what year did you get married?” 

and the respondent is single. Or study participants may simply 

refuse to answer. This sometimes occurs in response to the 

question, “What is your income?”

Data are also called “missing” when people decline to take 

part in a study or drop out along the way. Take, for example, a 

study looking at return to work among injured workers. Some 

injured workers may not take part because they don’t want to 

“make waves,” or may later withdraw from a study because 

their situation has changed (e.g. they feel better or worse, or 

have competing demands on their time).

Some studies are based not on information collected by the 

researcher, but on administrative information collected by a 

public agency. This data, too, can be incomplete. For example, 

studies relying on claims data from a workers’ compensation 

board may find that a claim file is missing information — say, 

on marital status or employment start-date — that is relevant 

to a study.

Does missing data matter?
Missing data may or may not be a problem. Most important 

is whether or not the data are missing at random. If there 

is a pattern to the missing information, then drawing wrong 

conclusions is much more likely. For example, the results of 

a workers’ compensation study could be skewed if those who 

refuse to take part largely come from a vulnerable group like 

recent immigrants, or if most of those who drop out do so 

because they have recovered. In other words, information that 

is consistently missing from the members of one group is a 

problem.

The impact of missing data also depends in part on the 

research question. If a study is looking at the relationship 

between health and socioeconomic status — as measured by 

income — then missing income information could be an issue. 

This is especially the case if people refuse to provide the in-

formation because of what their incomes are (e.g. on the high 

and low ends of the scale). If a study is looking at the relation-

ship between health and marital status, then missing income 

information may not be important.

How much information is missing is also a factor. If two per 

cent is missing, then sound conclusions are likely still possible. 

The same can’t be said if 20 per cent is missing.

What can be done about missing data?
Researchers don’t necessarily call it quits when information 

is missing. They deal with the problem in a number of ways. 

Indeed, whole books have been written about missing data in 

the field of statistical analysis.

Researchers might simply discard any record (e.g. question-

naire or claim file) that is missing information. Or they might 

“fill in” the missing data using what are called “imputation,” 

weighting or model-based procedures. These procedures are 

complicated. Each has its place, and none is perfect. There-

fore, researchers need to be very clear in the “limitations” 

section of their studies about what information is missing and 

how that may affect results.
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Multiple regression is a popular technique in statistics used 
to measure the relationship between many variables and 
an outcome.

In another entry in this book, we talk about the term simple 

regression (see p. 39) – a statistical method used to describe 

the relationship between two factors. We ask you to take on 

the role of a researcher for a real estate agency trying to find 

a way to accurately price clients’ homes based on house size. 

Using simple regression, you come up with an equation to do 

so. However, you don’t advise the real estate agency to price 

clients’ homes based on house size alone. You know other fac-

tors also affect selling price. This is where multiple regression 

comes in.

Instead of looking at a one-to-one relationship, multiple re-

gression looks at a one-to-many relationship. It is a statistical 

technique that allows researchers to examine the relationship 

between two or more factors (called independent variables) at 

the same time and analyze the extent to which each predicts 

or explains variations in the outcome of interest (called the 

dependent variable). The end result is a model (which, in 

essence, is a mathematical formula) that can be used to ex-

plain or predict outcomes based on the presence of different 

factors.

Main steps in multiple regression
Multiple regression analysis is hard. It’s an elaborate process, 

involving many steps and usually requiring sophisticated soft-

ware. Let’s go back to our example to take a look at some of 

the main steps in doing a multiple regression—most of them 

preparatory to ensure you are feeding the best information 

into the software program.

1.	 Determine the independent variables you want to 

include in your model. These variables need to make 

sense. Drawing on your understanding of the real estate 

market, you decide to include house size, neighbour-

hood average income, proximity to good schools, lot 

size, and number of bedrooms and bathrooms.

2.	 Collect information on each of the variables. You now 

randomly select, say, 100 houses that recently sold in 

the city. For each, you collect information on its size, 

neighbourhood income, proximity to good schools, lot 

size, number of bedrooms and bathrooms and, of course, 

its selling price.

3.	 Explore the relationship between each independent 

variable being considered and the dependent vari-

able. Using the information collected, you look at the 

relationship between house size and house price, 

average neighbourhood income and price, proximity 

to good schools and price, and so on. You use statisti-

cal techniques to determine if a clear (i.e. statistically 

significant) relationship exists between the factor and 

house price. If yes, you are more likely to keep the fac-

tor in your model. If not, you may or may not decide to 

use it depending on the nature of the problem you are 

trying to address.

4.	 Explore the relationship among the independent 

variables. Using the same methods above, you may 

decide to look at how the different factors relate to 

each other; e.g. between house size and neighbour-

hood income, neighbourhood income and proximity to 

good schools, and so on. You may find two factors are 

so closely related that it would be hard to tell which is 

contributing to differences in house prices. This is called 

“multi-collinearity.” Again, depending on the nature of 

the problem you are trying to address, you may or may 

not decide to keep both factors. You may also decide to 

look at how each factor relates to house price taking the 

other factors into account and, if the factor is no longer 

related, you may decide to remove it from your model.

5.	 Perform the multiple regression. For the factors you’ve 

included in your model, you enter the related infor-

mation into your software program, do a lot of other 

statistical prep work (to take into account errors, 

deviations and so on), then run your program. You end 

up with an equation that lets you answer questions like: 

To what extent do each of the factors (neighbourhood 

income, proximity to good schools, lot size, number 

of bedrooms and bathrooms) account for variations in 

home price? What is the predicted price of a particu-

lar home knowing the value of all the variables in the 

model? Multiple regression lets you answer these ques-

tions and more. That’s why it’s a powerful tool.
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Observational studies observe the effect of an intervention 
without trying to change who is or isn’t exposed to it, while 
experimental studies introduce an intervention and study its 
effects. The type of study conducted depends on the question 
to be answered.

When people read about a research study, they may not pay 

attention to how the study was designed. But to understand 

the quality of the findings, it’s important to know a bit about 

study design. 

According to the widely-accepted hierarchy of evidence, 

the most reliable evidence comes from systematic reviews, 

followed by evidence from randomized controlled trials, cohort 

studies and then case control studies. 

The latter three are research studies that fall into one of two 

main categories: observational studies or experimental studies.

Observational studies
Observational studies are ones where researchers observe 

the effect of a risk factor, diagnostic test, treatment or other 

intervention without trying to change who is or isn’t exposed 

to it. Cohort studies and case control studies are two types of 

observational studies. 

Cohort study: For research purposes, a cohort is any group 

of people who are linked in some way. For instance, a birth 

cohort includes all people born within a given time frame. 

Researchers compare what happens to members of the cohort 

that have been exposed to a particular variable to what hap-

pens to the other members who have not been exposed.

Case control study: Here researchers identify people with an 

existing health problem (“cases”) and a similar group without 

the problem (“controls”) and then compare them with respect 

to exposure.

Experimental studies
Experimental studies are ones where researchers introduce 

an intervention and study the effects. Experimental studies 

are usually randomized, meaning the subjects are grouped by 

chance.

Randomized controlled trial (RCT): Eligible people are 

randomly assigned to two or more groups. One group receives 

the intervention (such as a new drug) while the control group 

receives nothing or an inactive placebo. The researchers then 

study what happens to people in each group. Any difference in 

outcomes can then be linked to the intervention.

Strengths and weaknesses
The strengths and weaknesses of a study design should be 

seen in light of the kind of question the study sets out to 

answer. Sometimes, observational studies are the only way re-

searchers can explore certain questions. For example, it would 

be unethical to design a randomized controlled trial deliber-

ately exposing workers to a potentially harmful situation. If a 

health problem is a rare condition, a case control study (which 

begins with the existing cases) may be the most efficient  way 

to identify potential causes. Or, if little is known about how a 

problem develops over time, a cohort study may be the best 

design. 

However, the results of observational studies are, by their 

nature, open to dispute. They run the risk of containing 

confounding biases. Example: A cohort study might find that 

people who meditated regularly were less prone to heart 

disease than those who didn’t. But the link may be explained 

by the fact that people who meditate also exercise more and 

follow healthier diets. In other words, although a cohort is 

defined by one common characteristic or exposure, they may 

also share other characteristics that affect the outcome.

The RCT is still considered the “gold standard” for producing 

reliable evidence because little is left to chance. But there’s a 

growing realization that such research is not perfect, and that 

many questions simply can’t be studied using this approach. 

Such research is time-consuming and expensive — it may take 

years before results are available. Also, intervention research 

is often restricted by how many participants researchers can 

manage or how long participants can be expected to live in 

controlled conditions. As a result, an RCT would not be the 

right kind of study to pick up on outcomes that take a long 

time to appear or that are expected to affect a very minute 

number of people.
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In path analysis, researchers use models to map out 
relationships between many variables and test them for 
strength.

Let’s look at the link between watching TV and obesity. As a 

researcher, how might you learn more precisely how that link 

works?

You might want to find out whether watching TV affects 

body mass index (BMI) directly, or whether it affects some-

thing else first (e.g. less time spent on exercising, which in 

turn affects BMI)? Does it affect several other things first, 

which in turn affect BMI (e.g. less exercising and more expo-

sure to junk food ads)? If several other factors are involved, 

which of them have more impact than others?

To answer these types of questions, researchers use a meth-

od called path analysis to test out the many different ways 

one thing can affect another. Real-world cause-and-effect 

relationships are complicated. Path analysis helps researchers 

measure which of the possible relationships matter the most, 

and which might turn out to be not important at all.

In a path analysis, you would take the factors (called vari-

ables) that might explain what is happening and map them 

out in a path model. Using our TV and obesity example, your 

model might look like this:

Sometimes not much research is available to help. You might 

then decide to turn to focus groups to help you identify prob-

able pathways.

If the literature on TV watching was scant, for example, you 

might learn from focus group participants that they hardly go 

outside or they sit on the couch all the time when watching 

TV, and that these might be the reasons higher obesity rates 

are seen among TV watchers.

Testing the model
Once a model is drawn up, the heavy-lifting work of testing 

the model begins. This is where you would examine available 

data to find out how well they support your model. To do that, 

you would run statistical analyses (usually what is known as 

“regression analysis”; see www.iwh.on.ca/wrmb/regression) to 

measure the statistical strength of each pathway.

For example, the data might show that increased TV watch-

ing has a strong association with less time exercising, and less 

time exercising has a strong association with higher BMI. The 

strength of both relationships indicates that exercise time is 

an important factor through which TV watching affects BMI. 

(Researchers sometimes use the term mediating to describe 

this indirect relationship, one in which a variable acts through 

another variable—referred to as the mediating variable—to 

have an impact on something else.)

The data might point to variables in the model that aren’t 

all that important. For example, you might find a stronger 

relationship between TV watching and the number of junk 

food ads people see, but a weaker relationship between the 

junk food ads people see and BMI. That relationship may be so 

weak that you decide to drop it altogether from your model.

While statistics can help test your pathway model, they 

won’t protect you from faulty models. For example, you might 

find a link between outdoor time and TV time, but neglect to 

consider that outdoor time might be exerting an impact on TV 

time instead of the other way around. In a path model, nothing 

indicates the direction of causality.

Similarly, if important variables are missing from the model, 

statistics alone might not alert you to that omission. In other 

words, a model might fit the data, but not necessarily fit 

reality.

 

Path analysis

Determining what variables to include in the model is your 

job as a researcher. You’d have to comb through the literature 

to identify the variables that might play a role. For example, 

research showing a link between less time exercising and 

higher BMI would be reason to include exercise as a factor in 

your model.

Outdoor

Exercise

Couch

Junk Food Ads
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Primary data and secondary data are two types of data, 
each with pros and cons, each requiring different kinds of 
skills and resources,

What does each and every research project need to get 

results? Data – or information – to help answer questions, 

understand a specific issue or test a hypothesis.

Researchers in the health and social sciences can obtain 

their data by getting it directly from the subjects they’re inter-

ested in. This data they collect is called primary data. Another 

type of data that may help researchers is the data that has 

already been gathered by someone else. This is called second-

ary data.

What are the advantages of using these two types of data? 

Which tends to take longer to process and which is more 

expensive? This column will help to explain the differences 

between primary and secondary data.

Primary data
An advantage of using primary data is that researchers are 

collecting information for the specific purposes of their study. 

In essence, the questions the researchers ask are tailored to 

elicit the data that will help them with their study. Research-

ers collect the data themselves, using surveys, interviews and 

direct observations.

In the field of workplace health research, for example, direct 

observations may involve a researcher watching people at 

work. The researcher could count and code the number of 

times she sees practices or behaviours relevant to her inter-

est–e.g. instances of improper lifting posture or the number 

of hostile or disrespectful interactions workers engage in with 

clients and customers over a period of time.

To take another example, let’s say a research team wants to 

find out about workers’ experiences in return to work after a 

work-related injury. Part of the research may involve inter-

viewing workers by telephone about how long they were off 

work and about their experiences with the return-to-work 

process. The workers’ answers–considered primary data–will 

provide the researchers with specific information about the 

return-to-work process; e.g. they may learn about the fre-

quency of work accommodation offers, and the reasons some 

workers refused such offers.

Secondary data
There are several types of secondary data. They can include 

information from the national population census and other 

government information collected by Statistics Canada. One 

type of secondary data that’s used increasingly is administra-

tive data. This term refers to data that is collected routinely as 

part of the day-to-day operations of an organization, institu-

tion or agency. There are any number of examples: motor 

vehicle registrations, hospital intake and discharge records, 

workers’ compensation claims records, and more.

Compared to primary data, secondary data tends to be 

readily available and inexpensive to obtain. In addition, 

administrative data tends to have large samples, because the 

data collection is comprehensive and routine. What’s more, 

administrative data (and many types of secondary data) are 

collected over a long period. That allows researchers to detect 

change over time.

Going back to the return-to-work study mentioned above, 

the researchers could also examine secondary data in addition 

to the information provided by their primary data (i.e. survey 

results). They could look at workers’ compensation lost-time 

claims data to determine the amount of time workers were 

receiving wage replacement benefits. With a combination of 

these two data sources, the researchers may be able to de-

termine which factors predict a shorter work absence among 

injured workers. This information could then help improve 

return to work for other injured workers.

The type of data researchers choose can depend on many 

things including the research question, their budget, their 

skills and available resources. Based on these and other fac-

tors, they may choose to use primary data, secondary data–or 

both.
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Primary, secondary and tertiary prevention are three terms 
that map out the range of interventions available to health 
experts.

Prevention includes a wide range of activities — known as 

“interventions” — aimed at reducing risks or threats to health. 

You may have heard researchers and health experts talk about 

three categories of prevention: primary, secondary and ter-

tiary. What do they mean by these terms?

Primary prevention
Primary prevention aims to prevent disease or injury before it 

ever occurs. This is done by preventing exposures to hazards 

that cause disease or injury, altering unhealthy or unsafe 

behaviours that can lead to disease or injury, and increasing 

resistance to disease or injury should exposure occur. Ex-

amples include:

•	 legislation and enforcement to ban or control the use of 

hazardous products (e.g. asbestos) or to mandate safe 

and healthy practices (e.g. use of seatbelts and bike 

helmets)

•	 education about healthy and safe habits (e.g. eating 

well, exercising regularly, not smoking)

•	 immunization against infectious diseases.

Secondary prevention
Secondary prevention aims to reduce the impact of a disease 

or injury that has already occurred. This is done by detecting 

and treating disease or injury as soon as possible to halt or 

slow its progress, encouraging personal strategies to prevent 

reinjury or recurrence, and implementing programs to return 

people to their original health and function to prevent long-

term problems. Examples include:

•	 regular exams and screening tests to detect disease in 

its earliest stages (e.g. mammograms to detect breast 

cancer)

•	 daily, low-dose aspirins and/or diet and exercise pro-

grams to prevent further heart attacks or strokes

•	 suitably modified work so injured or ill workers can 

return safely to their jobs.

Tertiary prevention
Tertiary prevention aims to soften the impact of an ongoing 

illness or injury that has lasting effects. This is done by help-

ing people manage long-term, often-complex health problems 

and injuries (e.g. chronic diseases, permanent impairments) 

in order to improve as much as possible their ability to func-

tion, their quality of life and their life expectancy. Examples 

include:

•	 cardiac or stroke rehabilitation programs, chronic dis-

ease management programs (e.g. for diabetes, arthritis, 

depression, etc.)

•	 support groups that allow members to share strategies 

for living well

•	 vocational rehabilitation programs to retrain workers for 

new jobs when they have recovered as much as possible.

Going “upstream”
To help explain the difference, take this example. Let’s say 

you are the mayor of a town near a swimming hole used by 

kids and adults alike. One summer, you learn that citizens are 

developing serious and persistent rashes after swimming as 

a result of a chemical irritant in the river. You decide to take 

action.

If you approach the company upstream that is discharging 

the chemical into the river and make it stop, you are engaging 

in primary prevention. You are removing the hazardous expo-

sure and preventing rashes in the first place.

If you ask lifeguards to check swimmers as they get out of 

the river to look for signs of a rash that can then be treated 

right away, you are engaging in secondary prevention. You are 

not preventing rashes, but you are reducing their impact by 

treating them early on so swimmers can regain their health 

and go about their everyday lives as soon as possible.

If you set up programs and support groups that teach people 

how to live with their persistent rashes, you are engaging in 

tertiary prevention. You are not preventing rashes or dealing 

with them right away, but you are softening their impact by 

helping people live with their rashes as best as possible.

For many health problems, a combination of primary, 

secondary and tertiary interventions are needed to achieve a 

meaningful degree of prevention and protection. However, as 

this example shows, prevention experts say that the further 

“upstream” one is from a negative health outcome, the likelier 

it is that any intervention will be effective.
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Probability provides information about the likelihood of 
something happening. In public health research, it looks 
at the likelihood of a health effect due to exposures to risk 
factors.

If the Weather Network informs you that the probability of 

precipitation is 80 per cent for the day, it might prompt you to 

use your umbrella. 

We often use probability assessments informally in our daily 

lives to plan or make decisions. Formal probability theory is a 

fundamental tool used by researchers, health-care providers, 

insurance companies, stockbrokers and many others to make 

decisions in contexts of uncertainty.

Probability provides information about the likelihood that 

something will happen. Meteorologists, for instance, use 

weather patterns to predict the probability of rain. In epidemi-

ology, probability theory is used to understand the relationship 

between exposures and the risk of health effects.

Let’s start with a simple, classic example to illustrate prob-

ability: the toss of a coin. You know intuitively that there is a 

50 per cent chance of getting heads, and 50 per cent chance 

of getting tails. If you want to actually do the math to calculate 

the probability of a head, here’s the basic formula:

Count the number of times that the event will happen – in 

this case, there’s just one chance of a head appearing, so it’s 

1. Divide this by the total number of possible outcomes. With 

a coin, it’s either heads or tails – which is 2 outcomes. So the 

probability of getting heads is 1÷2, or 50 per cent.

Yet you could toss a coin 10 times and get seven heads and 

three tails, which is 70 per cent heads and 30 per cent tails. 

With this small number of repetitions, you can’t determine the 

probability accurately. However, if you toss that coin 1,000 

times or more – which a few people have done* – you will 

eventually begin to see that 50-50 breakdown.

This illustrates another important point about probability. It 

depends on the outcome or event happening over a large num-

ber of repetitions, or with a large number of people.

Use of probability in society
There are many examples of how probability is used through-

out society. One common measure is the probability of 

developing cancer. According to the Canadian Cancer Society, 

40 per cent of Canadian women and 45 per cent of men will 

have a diagnosis of an incident of cancer during their lifetimes. 

These probabilities are based on calculations from 2009 can-

cer statistics across the country.

While this broad information can be useful for those who 

plan, deliver or research health-care services, more detailed 

information is even more helpful. Researchers can also deter-

mine the probability of acquiring specific types of cancers at 

specific ages. They can also consider individual factors, which 

are important, too. If you have family members with breast 

cancer, your risk increases. If you smoke, your probability of 

getting lung cancer increases (smoking is estimated to ac-

count for between 88 and 90 per cent of lung cancer cases. 

The risk is significantly lower in never-smokers: about one per 

cent). These types of risk factors can be incorporated into 

probability calculations as well.

Another application of probability is with car insurance. 

Companies base your insurance premiums on your probability 

of having a car accident. To do this, they use information on 

the frequency of having a car accident by gender, age, type 

of car and number of kilometres driven each year to estimate 

an individual person’s probability (or risk) of a motor vehicle 

accident.

Probability can fall anywhere from 0 to 1, where 1 means 

there’s 100 per cent certainty that the event will occur. Zero 

means it will not.

So on a day in which the probability of precipitation was 

forecast at 80 per cent, but skies were sunny all day, you also 

have to consider that there was a 20 per cent chance that it 

wouldn’t rain. Still, you made a wise decision to take an um-

brella based on the probability you were given.
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Research on psychometrics examines the properties of a 
measure to ensure it’s accurate, consistent and sensitive to 
change.

If you’ve ever taken part in a questionnaire—a political poll, a 

customer satisfaction survey or a research study—you might 

not have given much thought to the types of question you 

were asked, how they were worded or how many there were. 

But researchers spend a great deal of time thinking about and 

creating the questions used in a study. In fact, this is an entire 

field of research called psychometrics.

Psychometrics is the field of study that looks at the design, 

delivery and interpretation of tests that measure human 

responses. Typically, these tests measure our knowledge or 

abilities (e.g. an IQ test), our personality and behaviour (e.g. 

whether we’re more introverted or extroverted) or our atti-

tudes and beliefs (e.g. how we feel about our level of health or 

the support we get in our workplace).

In health research, for example, psychometric testing is used 

to create measures that assess pain, fatigue, distress, anxiety, 

alertness, mobility, agility—the list goes on. In organizational 

research, psychometric testing is used to create measures 

that assess worker, supervisor and organizational experiences 

and behaviours, such as job satisfaction, perceived job char-

acteristics (e.g. job control, work overload), organizational 

commitment, job stress, job roles, work-family balance/con-

flict, leadership styles, person-organization fit, and so on.

Psychometrics uses mathematics and statistics, as well as 

lots of input from individuals to whom the measure is given, 

to ensure a measure works the way it’s intended to. It makes 

certain the questions asked cover a range of possible perspec-

tives and that they get enough detail without becoming too 

repetitive. It ensures the questions asked give rise to results 

that are valid, reliable and responsive.

Validity
Psychometrics assesses a tool’s validity by looking for evidence 

that indicates the tool measures what we think it should. For 

example, we might think a measure asking people about how 

important physical activity is to them is only valid if those 

individuals who say physical activity matters actually exercise 

more than those people who say physical activity doesn’t mat-

ter. We might think it isn’t valid if there are important aspects 

of physical activity that the questionnaire fails to include. That 

would be a question about content validity, just one of many 

different types of validity to consider.

Reliability
A tool is assessed for its reliability by determining if people 

give consistent answers to questions when asked those same 

questions under similar circumstances. For example, in devel-

oping a measure on the commuting difficulties workers face, 

you would run statistical analyses to find out if the questions 

given to the same group of workers on different occasions 

(but close in time) produce roughly the same results. That’s 

an example of test-retest reliability. Some measures ask others 

to rate or evaluate another person’s physical or psychological 

behaviours or health. A measure would be considered reliable 

if different observers score the same way. That’s an example of 

inter-rater reliability.

Responsiveness
And then there’s the question of the tool’s responsiveness. 

Psychometrics looks at its ability to measure meaningful 

change. That is, if a person’s situation, skills or beliefs change, 

is the tool sensitive enough to detect this change, and how 

much change has to take place before the measure will detect 

it? For example, if a new workplace wellness program is intro-

duced and the program is effective, can we capture changes 

using a health measure? What about if the change is small—is 

this just random error or is it meaningful and “real”?

There’s a great deal to be discussed when creating, applying 

and evaluating the many different measures used in research. 

Hopefully, this summary gives you an appreciation of the ef-

fort that researchers put into designing a questionnaire.
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Qualitative research aims to make sense of human experi-
ence, beliefs and actions. As such, it provides a rich source 
of information on social systems and processes.

It’s tempting to define “qualitative research” by what it is not. 

It is not based on statistics or surveys or experiments; that is, 

it is not quantitative research.

But it’s also important to understand what qualitative re-

search is – an approach used largely in the social sciences to 

explore social interactions, systems and processes. It provides 

an in-depth understanding of the ways people come to under-

stand, act and manage their day-to-day situations in particular 

settings.

To put it simply, quantitative research uses numbers to help 

us understand “what” is happening. Qualitative research uses 

words and images to help us understand more about “why” 

and “how.”

Compare, for example, two studies that are both address-

ing the issue of long-term workers’ compensation claims. One 

uses quantitative methods to find out what is driving increases 

in the duration of lost-time claims over the last decade. Using 

administrative data from a workers’ compensation board, the 

researchers test their hypotheses that claim duration may be 

associated with injury severity, a changing work environment 

or policy changes.

The other study uses qualitative methods to explore why 

and how some injured workers remain on workers’ compensa-

tion for long periods of time. Based on interviews with injured 

workers and service providers, the study finds that workers 

with long-term claims often try hard to return to work but 

encounter many roadblocks beyond their control. These may 

include seemingly mundane problems such as incomplete 

medical forms and miscommunication among the workplace 

parties. Taken together, such challenges prevent workers’ 

return to work.

How qualitative research is done
Qualitative research collects information that occurs naturally; 

that is, it doesn’t set up experiments. The main methods for 

collecting research include:

•	 conducting interviews and focus groups, during which 

people retell their experiences, thoughts and actions;

•	 observing people in their own settings;

•	 analyzing documents (from government reports to 

personal diaries); and

•	 analyzing conversations (as contained in documents, 

speeches, interviews, etc.).

With this collected information, qualitative research can be 

used to:

•	 describe the nature of what exists and how it is ex-

perienced by those in it (i.e. context); e.g. help us 

understand the experience of having a long-term claim;

•	 explain why things exist as they do; e.g. help us un-

derstand the events leading to long-term claims, the 

circumstances in which long-term claims occur and why 

they continue to occur;

•	 evaluate the effectiveness of interventions that aim to 

change what exists; e.g. help us understand the quality 

of any programs put in place to reduce long-term claims; 

and

•	  generate suggestions for ways to improve things, or for 

potential areas of new research; e.g. help us understand 

strategies for supporting workers on long-term claims 

and helping people avoid them to begin with.

Qualitative versus quantitative
Qualitative and quantitative research are often discussed as 

two camps, with researchers belonging to one or the other. 

However, this us-versus-them scenario is quickly falling by the 

wayside. There is a growing understanding that the two types 

of research share much in common.

Both strive for reliability and validity of their data, and both 

have developed systematic methods of doing so. As well, both 

aim to produce results that can be generalized and practically 

applied to help understand and solve problems.

In fact, the two types of research can be complementary and 

part of the same “toolkit” when it comes to exploring an issue, 

as shown in the earlier example of research into long-term 

claims. The choice isn’t about one being more accurate, more 

objective or more in-depth than the other, but about what 

information the researchers are trying to find out.
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One of the most powerful research tools, the randomized 
controlled trial is considered by some to be the “gold stan-
dard” for generating reliable evidence. 

In a researcher’s toolkit, the randomized controlled trial 

(RCT) is one of the best ways to produce valid evidence on 

the effectiveness of interventions, from prevention programs 

to treatment options. According to the established hierarchy 

of evidence, the most valid evidence from original research 

comes from RCTs, followed by cohort studies and then case 

control studies.

Here’s how RCTs work. Study participants are deemed 

eligible through a recruitment process that involves specific 

criteria for inclusion and an informed consent process.

Those eligible are randomly assigned, in a process that’s not 

unlike flipping a coin, into one of two groups or ‘arms’ of the 

study: (1) the intervention group, or (2) the control group. 

The first group receives the intervention being studied, which 

could be a new treatment or procedure. The second does not, 

and instead receives an inactive placebo, conventional treat-

ment or nothing at all.

The cornerstone of RCTs is this: Because the allocation 

process is random, it minimizes the chance that people who 

received treatment and those who did not had different 

characteristics. In other words, with random allocation, any 

differences in outcomes between the intervention group and 

the control group can be attributed to the intervention, as op-

posed to any of the participants’ attributes like age or disease.

An RCT in action
Let’s say you’re a scientist interested in non-medicated pain 

relief for fibromyalgia. Does acupuncture help? An RCT has 

already been conducted to answer this question.*

In the recruitment phase of this study, the research team 

sought to enlist female patients between the ages of 20 

and 70 years diagnosed with fibromyalgia according to the 

1990 American College of Rheumatology classification cri-

teria. To be included in the study, patients needed to have 

reported moderate to severe pain intensity and to be using 

antidepressants.

In the study, 58 women with fibromyalgia were allocated 

randomly to receive either: (1) acupuncture with tricyclic 

antidepressants and exercise, or (2) tricyclic antidepressants 

and exercise only. Patients rated their pain on a visual rating 

scale, and quality of life was also evaluated using a blinded as-

sessor (i.e. the researcher assessing the results).

At the end of 20 sessions, patients in the RCT who received 

acupuncture had significantly less pain than the control group. 

This study concluded that the addition of acupuncture to 

usual treatments for fibromyalgia may be beneficial for pain 

and quality of life for three months after the end of treatment.  

This conclusion would not have been possible without the 

use of an RCT.  Its random allocation process is one of the best 

ways to secure valid evidence.

*See “A randomized controlled trial of accupuncture added 

to usual treatment for fibromyalgia” in the July 2008 issue of 

Journal of Rehabilitation Medicine (Vol 40, No. 7, pp. 583-588)
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Regression to the mean is a statistical occurrence that may 
result in distorted or misleading findings if not taken into 
account.

Suppose you’re the superintendent of a school district and you 

want to improve the math scores of the Grade 3 students in 

your catchment who write compulsory province-wide exams. 

You hire a consulting math expert to help. The consultant 

starts by administering a math test to find out which students 

are most in need.

All 1,000 Grade 3 students in your district take the test, and 

the consultant chooses the 50 students with the lowest scores 

to receive a remedial math program. Once the program is 

complete, the 50 students take a second test, and their scores, 

on average, show a healthy improvement. On this basis, you 

roll out the remedial program to all Grade 3 math students in 

the district who are performing below par.

When the board-wide exam takes place later that year, 

you’re disappointed. The students’ scores are not much better 

than they were the previous year—and they certainly didn’t 

improve to the degree you expected based upon the results of 

the 50 poorest performing students.

What went wrong? You might want to consider the possibil-

ity of a statistical phenomenon called regression to the mean.

Regression to the mean refers to the tendency of results that 

are extreme by chance on first measurement—i.e. extremely 

higher or lower than average—to move closer to the average 

when measured a second time. Results subject to regression 

to the mean are those that can be influenced by an element 

of chance. When chance or fluke gives rise to extreme scores, 

it’s unlikely those extreme scores will be repeated on a second 

try.

In our school district, for example, the kids who scored 

the poorest on the first math test likely included some who 

normally know the answers but, by chance, did not that day. 

Perhaps they were tired, sick, distracted, etc. These kids were 

going to do better on the second test whether they received 

the remedial program or not, bringing up the average score 

among the 50 poorest performers.

You can see why researchers have to consider regres-

sion to the mean when they are studying the effectiveness 

of a program or treatment. If they don’t, they may wrongly 

conclude that their intervention is responsible for an improve-

ment when, in fact, regression to the mean is at play. This is 

especially the case when program effectiveness is based on 

measurements of people or organizations at the extremes—

the unhealthiest, the safest, the oldest, the smartest, the 

poorest performing, the least educated, the largest, etc. The 

ones on the low extremes are all likely to do better the second 

time around, and those on the top are likely to do worse—

even without the intervention.

Steps to account for regression to mean
Researchers can take a number of steps to account for regres-

sion to the mean and avoid making incorrect conclusions. The 

best way is to remove the effect of regression to the mean 

during the design stage by conducting a randomized con-

trolled trial (RCT). Because an RCT randomly assigns study 

participants to a study group (which receives the program or 

treatment) or a control group (which does not), the change in 

the control group provides an estimate of the change caused 

by regression to the mean (as well as any placebo effect). Any 

extra improvement or decline in the study group compared to 

the control group (as long as it is statistically significant) can 

be attributed to the effect of the program or treatment.

Researchers can also take multiple baseline measurements 

when selecting people or organizations to be part of a study 

group. They can then select participants based on the average 

of their multiple measurements, not just on a single test.

Scientists can also identify and account for regression to the 

mean when analyzing their results. This involves complicated 

statistical calculations too difficult to describe here.

Regression toward the mean is a statistical occurrence that 

can get in the way and distort researchers’ measurements. 

That’s why it has to be taken into account, in the design of the 

study or in the analysis of findings.
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Sample size refers to the number of participants or observa-
tions in a study. Power refers to the probability of finding a 
significant relationship. Often researchers begin a study by 
asking what sample size is necessary to produce a desir-
able power. 

Few of us read research reports with an eye to critiquing the 

methodology. The results are the main attraction, the reason 

for reading in the first place. But researchers spend much 

of their time planning how their studies will be carried out. 

Shouldn’t we pay more attention? As any decent researcher 

will tell you, a study’s results are only as good as its design. 

Sample size and power are key elements of study design.

Why is sample size important?
Sample size refers to the number of participants or observa-

tions included in a study. This number is usually represented 

by n. The size of a sample influences two statistical proper-

ties: 1) the precision of our estimates and 2) the power of the 

study to draw conclusions.

To use an example, we might choose to compare the perfor-

mance of marathon runners who eat oatmeal for breakfast to 

the performance of those who do not. Since it would be impos-

sible to track the dietary habits of every marathon runner in 

the world, we have little choice but to focus on a segment of 

that larger population. This might mean randomly selecting 

only 100 runners for our study. The sample size, or n, in this 

scenario is 100.

The study’s findings could describe the population of all 

runners based on the information obtained from the sample 

of 100 runners. No matter how careful we are about choosing 

our 100 runners, there will still be some margin of error in the 

study results. This is because we haven’t talked to everyone 

in our population of interest. We can’t be absolutely precise 

about how eating oatmeal affects running performance be-

cause it would be impossible to look at every instance in which 

these two activities coincide. This measure of error is known 

as sampling error. It influences the precision of our description 

of the population of all runners.

Sampling error, though unavoidable, can be eased by sample 

size. Larger samples tend to be associated with a smaller 

margin of error. This makes sense. To get an accurate picture 

of the effects of eating oatmeal on running performance, we 

need plenty of examples to look at and compare. However, 

there is a point at which increasing sample size no longer 

impacts the sampling error. This phenomenon is known as the 

law of diminishing returns.

What about power?
Clearly, determining the right sample size is crucial for strong 

experimental design. But what about power?

Power refers to the probability of finding a statistically 

significant result (read the column on statistical significance). 

In our study of marathon runners, power is the probability of 

finding a difference in running performance that is related to 

eating oatmeal.

We calculate power by specifying two alternative scenarios. 

The first, called the null hypothesis, is one that says there’s 

nothing going on in the population of interest. In our study of 

marathoners, the null hypothesis might say that eating oat-

meal has no effect on performance.

The second is the alternative hypothesis. This is the often 

anticipated outcome of the study. In our example, it might be 

that eating oatmeal results in consistently better performance.

The power equation uses these two alternatives so that 

the study can find the answer to the research question. As 

researchers, we want to know if our study of marathoners 

can detect the difference between oatmeal having no impact 

on running performance (the null hypothesis) and oatmeal 

having a considerable impact on running performance (the 

alternative hypothesis).

Often researchers will begin a study by asking what sample 

size is necessary to produce a desirable power. This process is 

known as a priori power analysis. It shows nicely how sample 

size and power are inter-related. A larger sample size gives 

more power.

While the particulars of calculating sample size and power 

are best left to the experts, even the most mathematically-

challenged of us can benefit from understanding a little bit 

about study design. The next time you read a research report, 

take a look at the methodology. You never know. It just might 

change the way you read the results.
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Sampling is the process of identifying the representative 
part of a larger whole that will allow findings from the 
sample to be applied to the whole. It is one of the most chal-
lenging aspects of study design. 

Sampling is an act of generalization that we participate in 

all the time. Consider the free samples at your local grocery 

store. 

When a representative from the deli offers you a square of 

pizza, you are being asked to draw conclusions about the taste 

and value of the product itself. Offering a whole pizza to every 

customer would be expensive, difficult to coordinate and, 

in all likelihood, a waste of time and effort. Chosen well, the 

samples will provide customers with enough information to 

decide whether a whole pizza is worth purchasing. The sample 

is a representative part, an extract from which to generalize 

back to the whole.

Sampling: A scientific process
In practice, identifying a representative part of a subject, 

event or population of interest is one of the more challenging 

aspects of study design. Let’s say we want to use an in-hospital 

survey to measure patient satisfaction. How will we select a 

group of patients to participate in our study?

To begin, we must differentiate between the theoretical 

population and the accessible population. The first might in-

clude any patient who has ever stayed in a hospital overnight. 

The second is limited to those who stayed in hospital on a 

specific night. Since we cannot hope to survey every member 

of the theoretical population, we must identify members of 

the accessible population to contact. The resulting subset of 

individuals will be our sampling frame.

However, we have to be cautious about introducing sam-

pling errors and non-sampling errors into the frame. Sampling 

errors are the differences between the sample and the popula-

tion being studied. In other words, they’re errors that occur 

because the data is from a part rather than the whole. Non-

sampling errors are statistical errors caused by human error. 

These can include data entry errors or biased questions in a 

survey. In our hospital survey, those who could not or did not 

respond to the survey could introduce non-sampling errors.

Probability sampling
Now that we’ve narrowed our population of interest, we 

must decide how to select the sample. Probability sampling 

is one of two primary strategies we might consider. In prob-

ability sampling, every member of the sampling frame has the 

potential to be selected for the study. Selection is random, and 

the probability of a member being chosen can be calculated. 

Knowing the probability of selection allows us to generalize to 

the population.

Non-probability sampling
In non-probability sampling, some members will have a 

greater chance of being selected than others, while some will 

have no chance of being selected at all. The probability of a 

member being chosen cannot be calculated, making it hard 

for researchers to know how well they have represented the 

theoretical population. Often researchers will turn to non-

probability sampling only when other data collection methods 

are not possible.

Convenience sampling is a type of non-probability sampling, 

and it illustrates both the benefits and drawbacks of this 

approach. In convenience sampling, the most accessible mem-

bers from the sampling frame are selected. For example, we 

might find that certain patients completed positive satisfaction 

surveys one year ago. It would be convenient to survey only 

those patients who already had a positive hospital experience. 

Probably they would be more willing to complete our survey. 

But in choosing only these patients, we must also ask whether 

it’s reasonable to generalize from their experiences.

While all sampling methods are subject to error, researchers 

must always keep their objective in view: to obtan meaningful 

information about the theoretical population. Fundamental to 

this goal is a workable sample.
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Selection bias is a common type of error where the decision 
about who to include in a study can throw findings into 
doubt.

Most scientific studies are designed to pinpoint the effect of 

something—such as the effect of a condition on developing 

a problem (disease, injury) or the effect of an intervention 

(treatment, program) on overcoming a problem. Scientists 

usually determine effect by taking two similar groups—the 

only difference being the groups’ exposure to that condition 

or intervention—and measuring the difference in outcomes 

experienced by them.

But what happens when the two groups selected were not 

similar to begin with? What if key characteristics distinguish-

ing the two might have played a role in producing the different 

outcomes? That’s an example of what’s called selection bias.

Bias is a type of error that systematically skews results in a 

certain direction. Selection bias is a kind of error that occurs 

when the researcher decides who is going to be studied. It is 

usually associated with research where the selection of par-

ticipants isn’t random (i.e. with observational studies such as 

cohort, case-control and cross-sectional studies).

For example, say you want to study the effects of work-

ing nights on the incidence of a certain health problem. You 

collect health information on a group of 9-to-5 workers and a 

group of workers doing the same kind of work, but at night. 

You then measure the rates at which members of both groups 

reported the health problem. You might conclude that night 

work is associated with an increase in that problem.

The trouble is, the two groups you studied may have been 

very different to begin with. The people who worked nights 

may have been less skilled, with fewer employment options. 

Their lower socioeconomic status would also be linked with 

more health risks—due to less healthy diets, less time and 

money for leisure activities and so on. So your finding may not 

be related to night work at all, but a reflection of the influence 

of socioeconomic status.

Selection bias also occurs when people volunteer for a study. 

Those who choose to join (i.e. who self-select into the study) 

may share a characteristic that makes them different from 

non-participants from the get-go. Let’s say you want to assess 

a program for improving the eating habits of shift workers. You 

put up flyers where many work night shifts and invite them to 

participate. However, those who sign up may be very different 

from those who don’t. They may be more health conscious to 

begin with, which is why they are interested in a program to 

improve eating habits.

If this was the case, it wouldn’t be fair to conclude that the 

program was effective because the health of those who took 

part in the program was better than the health of those who 

did not. Due to self-selection, other factors may have affected 

the health of your study participants more than the program.

Minimizing selection bias
Good researchers will look for ways to overcome selection 

bias in their observational studies. They’ll try to make their 

study representative by including as many people as possible. 

They will match the people in their study and control groups 

as closely as possible. They will “adjust” for factors that may 

affect outcomes. They will talk about selection bias in their 

reports, and recognize the degree to which their results may 

apply only to certain groups or in certain circumstances.

Another way researchers try to minimize selection bias is 

by conducting experimental studies, in which participants are 

randomly assigned to the study or control groups (i.e. ran-

domized controlled studies or RCTs). However, selection bias 

can still occur in RCTs. For example, it may be that the pool of 

people being randomly assigned to the intervention group is 

not very representative of the wider population. Or it could be 

the researcher’s allocation techniques aren’t so random (e.g. 

when clinicians, often motivated by good intentions, manipu-

late the allocation method to get their patients in a treatment 

group instead of the control group).

Often, selection bias is unavoidable. That’s why it’s important 

for researchers to examine their study design for this type of 

bias and find ways to adjust for it, and to acknowledge it in 

their study report.
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Simple regression helps researchers understand the 
relationship between two items, which can then be used to 
make predictions.

Suppose you are a researcher hired by a neighbourhood real 

estate agency, and your job is to help agents predict how 

much their clients’ homes will sell for. One theory you keep 

hearing from the agents is that house prices are closely related 

to the size of the house. They believe they should be able to 

predict the price of the house based on its square footage.

To test this theory, you would have to set up a study and use 

a common research technique called simple regression. This is 

a statistical method or tool that helps researchers understand 

the relationship between two items.

For your study, you first have to collect your data. You 

gather information on the homes that have been sold over the 

past year. For each house, you need to know its square foot-

age and selling price. You then plot this information on a chart 

and create what is called a scatter plot (see below).

In this case, the simple regression shows you that the equa-

tion that best describes the relationship between house price 

and square footage based on the information you  provided 

is y=150x. That is, the selling price of a house increases by 

$150 for every square foot increase in size. This equation is 

easily shown on a graph by a straight line, showing the “best 

fit” among all the dots on the scatter plot.This line or equation 

now becomes useful for predicting the selling price of a house. 

Knowing how big a client’s house is, the real estate agent can 

predict how much it will sell for. 

However, based on the simple regression, you wouldn’t 

advise the real estate agent to price homes based only on their 

square footage. You suspect that other things besides house 

size might account for the price of the house and, therefore, 

need to be taken into consideration. That’s where multiple 

regression comes in (see page 26).

 

Simple regression

The square footage is shown along the horizontal line, which 

is referred to as the “X axis.” The item that goes along this 

axis is called the independent or predictor variable because it 

is fixed. House price is shown on the vertical line or “Y axis.” 

This is called the dependent or response variable because it is 

changeable. That is, the dependent variable (price of house) 

changes depending on the independent variable (size of 

house).

Now you conduct your simple regression. A simple regres-

sion, often calculated using a software program, creates an 

equation that best describes the relationship between the two 

things you looked at in your study or, in other words, best 

“fits” the dots on your scatter plot.
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Statistical significance 
A statistically significant finding means that the differences 
observed in a study are likely real and not simply due to 
chance. 

It’s easy for non-scientists to misunderstand the term sig-

nificant when they come across it in an article. In everyday 

English, the word means “important.” But when researchers 

say the findings of a study were “statistically significant,” they 

do not necessarily mean the findings are important.

Statistical significance refers to whether any differences 

observed between groups being studied are “real” or whether 

they are simply due to chance. These can be groups of 

workers who took part in a workplace health and safety inter-

vention or groups of patients participating in a clinical trial.

Let’s consider a study evaluating a new weight loss drug. 

Group A received the drug and lost an average of four kilo-

grams (kg) in seven weeks. Group B didn’t receive the drug 

but still lost an average of one kg over the same period. Did 

the drug produce this three-kg difference in weight loss? Or 

could it be that Group A lost more weight simply by chance?

Statistical testing starts off by assuming something impos-

sible: that the two groups of people were exactly alike from 

the start. This means the average starting weight in each 

group was the same, and so were the proportions of lighter 

and heavier people.

Mathematical procedures are then used to examine differ-

ences in outcomes (weight loss) between the groups. The goal 

is to determine how likely it is that the observed difference 

— in this case, the three-kg difference in average weight loss 

— might have occurred by chance alone.

The “p” value
Now here’s where it gets complicated. Scientists use the term 

“p” to describe the probability of observing such a large dif-

ference purely by chance in two groups of exactly-the-same 

people. In scientific studies, this is known as the “p-value.”

If it is unlikely enough that the difference in outcomes 

occurred by chance alone, the difference is pronounced “sta-

tistically significant.”

Mathematical probabilities like p-values range from 0 (no 

chance) to 1 (absolute certainty). So 0.5 means a 50 per cent 

chance and 0.05 means a 5 per cent chance.

In most sciences, results yielding a p-value of .05 are consid-

ered on the borderline of statistical significance. If the p-value 

is under .01, results are considered statistically significant 

and if it’s below .005 they are considered highly statistically 

significant.

But how does this help us understand the meaning of sta-

tistical significance in a particular study? Let’s go back to our 

weight loss study. If the results yield a p-value of .05, here is 

what the scientists are saying: “Assuming the two groups of 

people being compared were exactly the same from the start, 

there’s a very good chance — 95 per cent — that the three-kg 

difference in weight loss would NOT be observed if the weight 

loss drug had no benefit whatsoever.” From this finding, scien-

tists would infer that the weight loss drug is indeed effective.

If you notice the p-value of a finding is .01 but prefer it ex-

pressed differently, just subtract the p-value from the number 

1 (1 minus .01 equals .99). Thus a p-value of .01 means there 

is an excellent chance — 99 per cent — that the difference in 

outcomes would NOT be observed it the intervention had no 

benefit whatsoever.

Not all statistical testing is used to determine the effective-

ness of interventions. Studies that seek associations — for 

example, whether new employees are more vulnerable to 

injury than experienced workers — also rely on mathematical 

testing to determine if an observation meets the standard for 

statistical significance.
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Statistically adjusted
When determining the relationship between two factors, sci-
entists need to take into account other factors that may affect 
that relationship. When they do, they statistically adjust their 
findings to reflect the impact of these other factors.

Let’s say you need surgery and are asked to choose between 

two hospitals in which to have it performed. You have informa-

tion about post-surgery survival rates in each hospital during 

the past two years, and it looks like this:

that, for patients in good health, 1.3 per cent of patients died 

in Hospital B compared to only one per cent in Hospital A. 

Interestingly, Hospital B also did worse for patients in poor 

health, with four per cent dying compared to 3.8 per cent in 

Hospital A. The confounding variable – condition of the patient 

– makes a big difference.

(How can Hospital A do better for patients in both good and 

poor health, yet do worse overall? It could be that Hospital A is 

a teaching hospital with leading-edge surgeons, which serves 

seriously ill people from a wide geographic region. It attracts 

a much higher number of patients in poor health, who are 

more likely to die. As a result, Hospital A has a higher death 

rate overall, despite its better performance for each type of 

patient.)

Again, scientists may express this to you in a different way. 

This time, they will tell you that the odds ratio has been statis-

tically adjusted to incorporate the effect of patient condition 

at the time of surgery, and is now 1.14. In other words, there 

is a 14 per cent higher risk of dying post- surgery in Hospital 

B than in Hospital A after taking the health of patients into 

account.

If other potentially confounding factors, such as age of 

patient, socioeconomic background, etc., are also taken into 

account, scientists will give you an odds ratio that they call 

fully adjusted. A fully adjusted odds ratio strips away the 

effects of other factors, theoretically leaving only the relation-

ship between the two studied factors standing.

 

 At first glance, you would likely choose Hospital B. After all, 

your chances of dying after surgery in Hospital B are only two 

per cent compared to three per cent in Hospital A.

Scientists may express this to you as an odds ratio (OR). 

Comparing the risk of dying post-surgery in the two hospitals 

(two versus three per cent), they will tell you the odds ratio is 

0.66. In other words, relatively speaking, there is a 34 per cent 

lower risk of dying in Hospital B than in Hospital A.

What these scientists will also tell you, however, is that this 

is an unadjusted or crude odds ratio. No other factors are tak-

en into account when looking at the relationship between the 

hospital and the likelihood of dying. However, other factors 

may certainly affect the outcome. How old were the patients 

at each hospital? Were they in good health before surgery?

These other factors are called confounding variables. They 

are the “something else” that could affect the relationship be-

tween two other things – in this case, the relationship between 

the hospital and post-surgery outcomes.

Let’s look again at the two hospitals and, this time, take into 

account the health of the patients going into surgery: either 

“good” or “poor.”

With this information, you would be wise to change your 

mind and choose Hospital A. That’s because you can now see 

Hospital A Hospital B

Died 63 (3%) 16 (2%)

Survived 2,037 (97%) 784 (98%)

Total 2,100 (100%) 800 (100%)

Good health 

Hospital A Hospital B

Died 6 (1%) 8 (1.3%)

Survived 594 (99%) 592 (98.7%)

Total 600 (100%) 600 (100%)

Poor health	

Hospital A Hospital B

Died 57 (3.8%) 8 (4%)

Survived 1,433 (96.2%) 192 (96%)

Total 1,500 (100%) 200 (100%)



42 • Institute for Work & Health (IWH)

Subgroup analysis
Subgroup analysis is a tool for exploring differences in how 
people respond to a health intervention, but it must be used 
with care.

Think of a time you looked at a study and wondered if the 

thing being studied—a treatment, program or other inter-

vention—was more effective for some people than others. 

Subgroup analysis is one way of finding out. It’s a type of 

analysis done by breaking down study samples into subsets of 

participants based on a shared characteristic. The goal is to 

explore differences in how people respond to an intervention.

For example, let’s say you want to study the effectiveness 

of a new drug for pain relief. You might set up a randomized 

controlled trial where one group gets the drug (the interven-

tion group) and the other gets a placebo (the control group). 

Your goal is to find out whether those who receive the new 

drug report less pain compared to the control group.

However, you might also want to know if the new drug works 

better for certain groups of people than others. So you divide 

the study participants into subgroups according to factors that 

may be important: the type of condition causing the pain, how 

long the condition has been present, gender, age, etc. You may 

learn that the treatment works better for certain conditions 

and for women below a certain age—all potentially crucial 

information.

This might sound easy enough. But the research world 

struggles with subgroup analysis. That’s because, when done 

improperly, it can lead to exaggerated or wrong findings.

How subgroup analysis can go wrong
There are two main reasons subgroups can lead to error. The 

sample size can be too small, and there can be too many com-

parisons done. When you break down your study sample into 

many subgroups, you may end up with too few participants in 

each to detect differences, or to ensure differences aren’t just 

a matter of chance.

Take our pain relief study. Let’s say there’s a small but 

important difference in how people with neck pain respond 

to the treatment versus those with back pain. With enough 

people in the subgroups, you could find that difference, even if 

it’s small. But if your subgroups have too few people in them, 

you won’t have the “statistical power,” as it’s called, to detect 

the difference. As a result, you miss a difference that exists. 

Scientists call this a false-negative error.

Subgroup analysis can also lead you to make a false-positive 

error—when you see differences that aren’t really there. If 

you slice and dice your study sample enough times, you’ll 

eventually end up with a subgroup that responds to the pain 

treatment differently than the rest—such as redheads or 

people born in January.  That would be what scientists call a 

spurious finding—one that doesn’t make sense biologically or 

isn’t based on sound theory.

There’s also the kind of error that happens when you inap-

propriately define your subgroups. Take a factor such as age, 

for example. In your study, you might look at how the drug 

affects people of different ages—say, people in their 20s, 30s 

and 40s. But really, what’s your rationale for subgroups of 10 

years and not five years or 20? What if, by pure chance, the 

37- and 38-year-olds respond really well to the treatment? 

Would you be able to resist the temptation to divvy up your 

sample into two-year subgroups and report on those find-

ings? What if that meant the difference between getting your 

research published and not?

When subgroup analysis goes right
Despite these problems, there are certain things you can look 

for to tell whether a subgroup analysis has been done right:

•	 the subgroup analysis is a stated study objective from 

the start—not an afterthought;

•	 the researcher can explain the reason for doing the sub-

group analysis (based on previous research or a sound 

hypothesis, for example);

•	 ideally, the researcher defines the subgroups upfront 

and states how many subgroup analyses will be done. As 

well, the researcher reports on all of them, not just the 

ones that give rise to interesting findings; and

•	 the study is designed so that the subgroups have large 

enough sample size.

Subgroup analysis is important for investigating differences 

in how people respond to a treatment or intervention. But 

when misused, it can result in misleading findings. That’s why 

it’s important to understand the risks associated with this 

kind of analysis and to know what to look for when you come 

across it.
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Survival analysis 
Survival analysis techniques allow researchers to study 
lengths of time, often to predict when a given event or end 
point will occur.  

Survival analysis is a branch of statistics that allows research-

ers to study lengths of time. Historically, it was developed to 

study/predict time to death of patients with a disease or an 

illness, and it typically focused on the time between diagno-

sis (‘start’ time) and death (‘end’ time). As such, it is used to 

answer questions such as: What fraction of a population will 

survive past a certain time? How do particular circumstances 

(e.g. taking a new medication) or characteristics (e.g. age of 

patient) increase or decrease time to death?

However, survival analysis techniques do not always entail 

timelines leading to death. They can be used to study the 

probability of a wide range of time outcomes. For example, 

in the social sciences, researchers may study the “survival” 

of marriages, high school drop-out rates (time to drop-out), 

spells of unemployment and, as we will see, time to return to 

work following a workplace injury.

Survival times are data that measure follow-up time from a 

defined starting point to the occurrence of a given event or 

end point. However, if a study stops before all participants 

have reached the end point, survival analysis can accom-

modate this partial information; i.e. that these participants 

survived at least so long. For example, a researcher studying 

the effectiveness of a new treatment for a disease considered 

terminal would not want to exclude patients who survived the 

entire study period, because their survival reflects on the ef-

fectiveness of the treatment.

Kaplan–Meier survival curve
Researchers have a number of methods for analyzing data 

in order to show the distribution of lengths of time taken 

to reach a certain end point. One of the more widely used 

methods is the Kaplan–Meier survival curve, named after its 

creators Edward Kaplan and Paul Meier.

To show how this curve conveys this information, let’s say 

you were studying return to work (RTW) among a group of 

injured workers with low back pain (LBP). Based on your find-

ings, you might want to show what percentage of workers with 

LBP will return to work by certain points over time and how 

particular circumstances affect the timing of RTW.

The Kaplan-Meier curves (only available on hard copy of 

article) show workers who had no workplace RTW program 

(the lighter curve) and workers with an established RTW plan 

at work (the darker curve) and the number of days it took to 

return to work after a sick leave due to LBP. As shown in the 

graph, approximately 15 per cent of injured workers with an 

RTW program had not returned to work by 180 days, but an 

even greater percentage—20 per cent—had not yet returned 

to work by 180 days where there was no RTW program. This 

suggests that RTW programs are helpful in getting more in-

jured workers back to work.

So survival analysis can do more than predict death. It can 

aid decision-making in a wide variety of situations, including 

work and health.
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Systematic review
A systematic review helps users of evidence keep up to date 
on a body of research by synthesizing the findings of higher 
quality studies on a given topic.

Think of the last time you came across a research study that 

seemed to contradict some other study on the same question. 

You can probably think of a few examples, especially for health 

topics that are often in the news. One moment you hear that 

acupuncture helps relieve pain. The next, a new study says it 

doesn’t.

If you think about how research studies are conducted, you 

can appreciate why discrepancies in findings arise. Different 

researchers studying the same question might enlist different 

numbers of participants. They might choose different study 

designs. There might be differences in how they administer 

the treatment or intervention or how they measure the effect 

of the intervention. All these things make a difference to what 

researchers ultimately find.

In other words, when looking for research evidence, you 

need to look beyond a single study and take into account the 

overall body of evidence. But given the amount of published 

research on a given topic, keeping up on the evidence can 

overwhelm anyone—including clinicians, researchers and 

policy-makers.

This is where systematic reviews come in. They help people 

keep up on what the overall body of research says on a topic. 

They’re designed to take into account the reliable available 

evidence on a subject at a given point in time.

To do this, researchers on a systematic review team go 

through all the studies relevant to a topic and assess the 

quality of each. From the higher quality studies, they’ll pull 

out a synthesis of the findings. Often, they’ll combine the data 

from different studies to do what’s known as meta-analysis 

(see www.iwh.on.ca/wrmb/meta-analysis). And as systematic 

reviews can only synthesize the available research at a point in 

time, they need to be updated regularly.

Narrative vs.  systematic reviews
To better understand systematic reviews, consider traditional 

narrative reviews that were once more commonplace. Like 

systematic reviews, narrative reviews also synthesize the 

scientific literature on a given question. The main difference 

is narrative reviewers draw chiefly from their experience and 

expertise for their analysis. This makes narrative reviews more 

susceptible to bias. No clear methodology is evident to help 

readers understand whether reviewers have considered all 

the available evidence, or how and why they recommend one 

study over another.

Systematic reviews, in contrast, minimize this type of bias by 

putting methodology front and centre. Like any other scientif-

ic study, systematic reviews should be replicable. That means 

another research team, using the same methodology to tackle 

the same question, should be able to gather the same evidence 

and come to the same conclusion.

As such, all the steps taken in systematic reviews are clearly 

and transparently outlined. Right from the literature search, 

systematic reviews spell out what terms are used, which data-

bases are searched, and what criteria are applied to limit the 

search (e.g. language of published studies). Subsequent steps 

are guided just as much by methodology—from deciding what 

studies are relevant, to assessing the studies for how rigor-

ously they were carried out.

Another distinguishing aspect of systematic reviews is their 

focus. While narrative reviews might cover off a broad topic, 

systematic reviews centre on a single research question. This 

question is typically defined by applying the PICO principle; 

that is, the question indicates the population, intervention, 

comparison and outcome being considered in the review. The 

result might read like this statement of objective from an ac-

tual review: “A review of randomized trials of acupuncture for 

adults with non-specific (sub)acute or chronic low-back pain.”

Systematic reviews, though relatively new, are growing 

more popular as people increasingly recognize the value of 

evidence-based practice and policy. Given the amount of new 

research being produced, systematic reviews have become an 

important tool for staying up to date.
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Validity and reliability 
Validity and reliability are concepts that capture the mea-
surement properties of a survey, questionnaire or another 
type of measure.

Validity and reliability are important concepts in research. The 

everyday use of these terms provides a sense of what they 

mean (for example, your opinion is valid; your friends are reli-

able). In research, however, their use is more complex.

Suppose you hear about a new study showing depression 

levels among workers declined during an economic downturn. 

You learn that this study used a new questionnaire to ask 

workers about their mental health over a number of years. You 

decide to take a closer look at the strength of this new ques-

tionnaire. Was it valid? Was it reliable?

To assess the validity and reliability of a survey or other 

measure, researchers need to consider a number of things.

Ensuring the validity of measurement
At the outset, researchers need to consider the face validity 

of a questionnaire. That is, to a layperson, does it look like it 

will measure what it is intended to measure? In our example, 

would the people administering and taking the questionnaire 

think it a valid measure of depression? Do the questions and 

range of response options seem, on their face, appropriate for 

measuring depression?

Researchers also need to consider the content validity of 

the questionnaire; that is, will it actually measure what it is 

intended to measure. Researchers often rely on subject-matter 

experts to help determine this. In our case, the researchers 

could turn to experts in depression to consider their questions 

against the known symptoms of depression (e.g. depressed 

mood, sleeping problems and weight changes).

When questionnaires are measuring something abstract, 

researchers also need to establish its construct validity. This 

refers to the questionnaire’s ability to measure the abstract 

concept adequately. In this case, the researchers could have 

given a questionnaire on a similar construct, such as anxiety, 

to see if the results were related, as one would expect. Or 

they could have given a questionnaire on a different construct, 

such as happiness, to see if the results were the opposite.

It may sometimes be appropriate for researchers to establish 

criterion validity; that is, the extent to which the measure-

ment tool is able to produce accurate findings when compared 

to a “gold standard.” In this case, the gold standard would be 

clinical diagnoses of depression. The researchers could see 

how their questionnaire results relate to actual clinical diagno-

ses of depression among the workers surveyed.

Ensuring the reliability of measurement
Researchers also need to consider the reliability of a ques-

tionnaire. Will they get similar results if they repeat their 

questionnaire soon after and conditions have not changed? 

In our case, if the questionnaire was administered to the 

same workers soon after the first one, the researchers would 

expect to find similar levels of depression. If the levels haven’t 

changed, the “repeatability” of the questionnaire would be 

high. This is called test-retest reliability.

Another aspect of reliability concerns internal consistency 

among the questions. Do similar questions give rise to simi-

lar answers? In our example, if two questions are related to 

amount of sleep, the researchers would expect the responses 

to be consistent.

Researchers also look at inter-rater reliability; that is, 

would different individuals assessing the same thing score 

the questionnaire the same way. For example, if two differ-

ent clinicians administer the depression questionnaire to the 

same patient, would the resulting scores given by the two be 

relatively similar?

If our depression researchers were sloppy in ensuring the 

validity or reliability of their questionnaire, it could affect the 

believability of their study’s overall results. Although you can 

never prove reliability or validity conclusively, results will be 

more accurate if the measures in a study are as reliable and 

valid as possible.
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